Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1983 Jun;26(6):775-85.
doi: 10.1021/jm00360a001.

New developments in Ca2+ channel antagonists

Review

New developments in Ca2+ channel antagonists

R A Janis et al. J Med Chem. 1983 Jun.

Abstract

Toward the beginning of this Perspective we posed a number of questions to be answered concerning the Ca2+ channel antagonists. Biochemical, chemical, clinical, pharmacological, and physiological studies collectively support the conclusion that this important group of molecules does function in specific fashion to inhibit Ca2+ channel function. Major questions of mechanisms and sites of action remain, however, to be resolved. The recent radioligand binding assay supports the conclusion, drawn earlier from the chemical and pharmacological heterogeneity of these agents, that there exists multiple sites and mechanisms of action for the Ca2+ channel antagonists. This is a satisfying conclusion, since, although it makes high demands on future experimentation designed to delineate these sites and mechanisms, it indicates the very real possibility for the development of tissue-selective Ca2+ channel antagonists. Elsewhere in this review we have already addressed the question of tissue selectivity as observed for existing compounds. In our opinion, the structural and pharmacological clues available should bring us closer to the goal of second- and third-generation Ca2+ antagonists with defined tissue selectivity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources