Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1983 Mar;22(3 Spec No):373-83.
doi: 10.1016/0028-3908(83)90186-7.

On the mode of action of imipramine: relationship between serotonergic axon terminal function and down-regulation of beta-adrenergic receptors

Review

On the mode of action of imipramine: relationship between serotonergic axon terminal function and down-regulation of beta-adrenergic receptors

M L Barbaccia et al. Neuropharmacology. 1983 Mar.

Abstract

Recognition sites for [3H]imipramine and [3H]mianserin are located in different structures and regulate different neuronal functions. Recognition sites for [3H]imipramine are located on serotonergic terminals, are part of the supramolecular organization of the uptake mechanisms and can be down-regulated by prolonged administration of the drug. When the number of recognition sites for imipramine is down-regulated, uptake of 5-hydroxytryptamine (5HT) in rat brain hippocampal slices is increased. The presence of the binding sites for imipramine in 5HT terminals is essential to mediate the down-regulation of recognition sites for norepinephrine (NE) and NE-mediated stimulation of adenylate cyclase. Mianserin binds on a site that is modulated by 5HT, the number of its binding sites is not down-regulated by repeated treatment and, like imipramine, decreases the NE-dependent cyclase but not the number of beta-adrenergic receptor recognition sites. Repeated treatment with imipramine and mianserin down-regulated the number of 5HT2 recognition sites. Several lines of evidence indicate that binding site for mianserin is related but not identical to the 5HT2 receptor binding site.

PubMed Disclaimer

Similar articles

Cited by