Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jun 15;212(3):849-58.
doi: 10.1042/bj2120849.

Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol

Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol

M J Berridge. Biochem J. .

Abstract

The agonist-dependent hydrolysis of inositol phospholipids was investigated by studying the breakdown of prelabelled lipid or by measuring the accumulation of inositol phosphates. Stimulation of insect salivary glands with 5-hydroxytryptamine for 6 min provoked a rapid disappearance of [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) but had no effect on the level of [3H]phosphatidylinositol (PtdIns). The breakdown of PtdIns(4,5)P2 was associated with a very rapid release of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reached a peak 5 1/2 times that of the resting level after 5 s of stimulation. This high level was not maintained but declined to a lower level, perhaps reflecting the disappearance of PtdIns(4,5)P2. 5-Hydroxytryptamine also induced a rapid and massive accumulation of inositol 1,4-bisphosphate [Ins(1,4)P2]. The fact that these increases in Ins(1,4,5)P3 and Ins(1,4)P2 precede in time any increase in the level of inositol 1-phosphate or inositol provides a clear indication that the primary action of 5-hydroxytryptamine is to stimulate the hydrolysis of PtdIns(4,5)P2 to yield diacylglycerol and Ins(1,4,5)P3. The latter is then hydrolysed by a series of phosphomonoesterases to produce Ins(1,4)P2, Ins1P and finally inositol. The very rapid agonist-dependent increases in Ins(1,4,5)P3 and Ins(1,4)P2 suggests that they could function as second messengers, perhaps to control the release of calcium from internal pools. The PtdIns(4,5)P2 that is used by the receptor mechanism represents a small hormone-sensitive pool that must be constantly replenished by phosphorylation of PtdIns. Small changes in the size of this small energy-dependent pool of polyphosphoinositide will alter the effectiveness of the receptor mechanism and could account for phenomena such as desensitization and super-sensitivity.

PubMed Disclaimer

References

    1. J Neurochem. 1979 Jan;32(1):225-8 - PubMed
    1. J Neurochem. 1979 Jan;32(1):5-14 - PubMed
    1. Biochem J. 1978 Nov 15;176(2):541-52 - PubMed
    1. Biochem J. 1979 Jan 15;178(1):45-58 - PubMed
    1. Biochem J. 1979 Sep 15;182(3):661-8 - PubMed