Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983:399:5-17.
doi: 10.3109/00016488309105588.

Intracochlear electrical stimulation of normal and deaf cats investigated using brainstem response audiometry

Intracochlear electrical stimulation of normal and deaf cats investigated using brainstem response audiometry

R C Black et al. Acta Otolaryngol Suppl. 1983.

Abstract

Brainstem response audiometry for intracochlear electrical stimulation of normal-hearing and deafened cats was investigated. In normal cochleas the brainstem response amplitude grew slowly near threshold as a current-amplitude dependent process, identified as electrophonic in origin. This terminated in a rapidly growing charge-dependent process at approximately 20 dB above threshold, identified as direct electrical stimulation of the auditory nerve. Small levels of white noise (25-35 dB SPL) were sufficient to mask most of the electrophonic response, leaving the direct stimulation process essentially unmodified. In cochleas damaged with d.c. currents and loud sounds, only a rapidly growing charge-dependent process was observed which grew similarly to that in normal-hearing cats but occurred at lower currents. This indicates that possibly the electrical properties of the cochlea were altered in the deafening process, suggesting the inadequacy of normal animals as deaf models for electrical stimulation. Using the technique of derived brainstem responses, it was shown that direct electrical stimulus components were localized to the vicinity of the stimulus electrode with electrophonic components distributed more widely. However, at high currents there was some evidence of the stimulus spreading into the internal auditory meatus.

PubMed Disclaimer

Publication types

LinkOut - more resources