Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jan 25;769(2):311-6.
doi: 10.1016/0005-2736(84)90311-0.

Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena

Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena

H Nakayama et al. Biochim Biophys Acta. .

Abstract

Changes in the thermal phase transition temperature of membrane lipids were studied by X-ray wide-angle diffraction during adaptation of Tetrahymena pyriformis to a lower growth temperature. After a shift in growth temperature from 39 to 15 degrees C, the phase transition temperature was lowered gradually in microsomal and pellicular phospholipids, whereas that in mitochondrial phospholipids was unchanged for 10 h after the temperature shift. Only a small decrease in the transition temperature of mitochondrial phospholipids was observed, even after 24 h following the shift. Transition temperatures of microsomal, pellicular and mitochondrial phospholipids reached the growth temperature (15 degrees C) about 6, 10 and 24 h after the temperature shift. The temperature dependence of the solid phase in membrane phospholipids was estimated from the 4.2 A peak of the X-ray diffraction pattern. In the case of the phospholipids extracted from cells grown at 39 degrees C, the solid phase was increased upon lowering temperature in a similar manner in all three membrane fractions: mitochondria, pellicles and microsomes. However, in the case of the phospholipids from cells exposed to a lower growth temperature (15 degrees C) for 10 h, the increase in the solid phase was significantly smaller in mitochondrial phospholipids than in two other membrane fractions. The difference in the thermal behaviour of mitochondrial lipid from pellicular and microsomal lipids is discussed in terms of phase transition and phase separation.

PubMed Disclaimer

LinkOut - more resources