Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Mar;229(2):640-9.
doi: 10.1016/0003-9861(84)90197-8.

Uncoupler-stimulated Na+ pump and its possible role in the halotolerant bacterium, Ba

Uncoupler-stimulated Na+ pump and its possible role in the halotolerant bacterium, Ba

S Ken-Dror et al. Arch Biochem Biophys. 1984 Mar.

Abstract

In cells of Ba1 suspended in K salt as the osmoticum, the respiratory rate declined by 80% between the pH values of 6.5 and 8.5. Catalytic amounts of Na+ ions prevented this drop. The possibility that Na+ exerted its effect by an influence on proton fluxes across the membrane (Na+/H+ exchange) was explored. Addition of catalytic amounts of Na+ ions to cells respiring at pH 8.5 elicited an influx of protons and, as a result, the delta pH across the membrane became diminished. delta psi (membrane potential) was not affected by Na+. At pH 6.5, Na+ caused no proton influx. FCCP (carbonylcyanide-p-trifluoromethoxyphenylhydrazone) collapsed delta psi, but the Na+-dependent proton influx observed at pH 8.5 became enhanced, leading to an inversion of delta pH (more acid inside). When a Na salt was used as the osmoticum, delta pH of reversed polarity was generated by respiration also in the absence of FCCP. Respiring, inverted membrane vesicles responded to a Na+ pulse essentially as the intact cells. Based on the above and some additional findings it is suggested that these Na+-dependent effects are suited to prevent a raise in the intracellular pH over the level which hinders the respiratory activity. It may also play a role in the regulation of intracellular Na salt content.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources