Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983;33(6):1039-56.
doi: 10.2170/jjphysiol.33.1039.

Single channel analysis of the inward rectifier K current in the rabbit ventricular cells

Single channel analysis of the inward rectifier K current in the rabbit ventricular cells

M Kameyama et al. Jpn J Physiol. 1983.

Abstract

The inward rectifier K channel in rabbit ventricular cells was studied by the patch-clamp method. Single channel currents were recorded in giga-sealed cell-attached patches with 150 mM K+ in the pipette. The slope conductance in the membrane potential range from -140 to -40 mV was 46.6 +/- 6.7 pS (mean +/- S.D., n = 16), and was reduced by decreasing [K+] in the pipette (20 or 50 mM). The channel was blocked by an application of Cs+ or Ba2+ (0.04-1 mM) in the pipette. Outwardly directed current, recorded with 50 mM K+ in the pipette, revealed the inward rectification of the single channel current. The probability of the channel being open was 0.33 +/- 0.05 (n = 10) at the resting potential (RP=-81.7 +/- 1.7 mV, n = 16) with 150 mM K+ in the pipette, and it decreased with hyperpolarization. The mean open time of the channel was 178 +/- 25 msec (n = 6) at RP. The closed time of the channel seemed to have two exponential components, with time constants of 11.0 +/- 2.0 msec and 1.92 +/- 0.52 sec (n = 6) at RP. The slower time constant was increased with hyperpolarization. The averaged patch current recorded upon hyperpolarizing pulses demonstrated a time-dependent current decay as expected from the single channel kinetics. The results indicated that the inward rectifier K+ current has time- and voltage-dependent kinetics.

PubMed Disclaimer

Publication types

LinkOut - more resources