Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 May 15;141(1):217-22.
doi: 10.1111/j.1432-1033.1984.tb08178.x.

Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri

Free article

Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri

M Blaut et al. Eur J Biochem. .
Free article

Abstract

The addition of methanol to a cell suspension of Methanosarcina barkeri resulted in an increase of the intracellular ATP concentration from 1 nmol/mg to 10 nmol/mg protein and in the formation of a proton-motive force delta p of -130 mV. delta p consisted of more than 90% of the membrane potential delta psi. These values were similar under N2 and under H2. The addition of the uncoupler tetrachlorosalicylanilide to the above system under N2 led to a drastic decrease of both, the ATP concentration and the delta p and to a stop of methanogenesis. With methanol and H2, however, methane formation continued, although the effect of the uncoupler on the ATP pool and on delta p was a under N2. The proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide caused a rapid exhaustion of the ATP pool and a discontinuation of methane synthesis, whereas delta p was unaffected. Inhibition of methane formation under these conditions could be relieved by the addition of the uncoupler tetrachlorosalicylanilide. These results demonstrate that methane formation according to the equation CH3OH + H2----H2----CH4 + H2O was coupled to ATP synthesis by a chemiosmotic mechanism and was under the control of delta psi: Methane formation only proceeded if the delta psi generated was used for ATP synthesis or if an uncoupler was present. Under N2, methane formation according to the equation 4CH3OH ----CO2 + 3CH4 + 2H2O was abolished by an uncoupler, because one step in the oxidation of methanol to 1 CO2 apparently depended on an energized state of the membrane.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources