Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Mar;97(3):546-55.

Inhibitors of poly(ADP-ribose) synthesis enhance X-ray killing of log-phase Chinese hamster cells

  • PMID: 6328564

Inhibitors of poly(ADP-ribose) synthesis enhance X-ray killing of log-phase Chinese hamster cells

E Ben-Hur et al. Radiat Res. 1984 Mar.

Abstract

Postirradiation incubation of V79 Chinese hamster cells with inhibitors of poly(ADP-ribose) synthesis was found to potentiate the killing of cells by X rays. Potentiation increased with incubation time and with concentration of the inhibitor. Preirradiation incubation had only a small effect. The enhanced response correlated well with the known extent of the inhibition of poly(ADP-ribose) synthesis. A radiation-sensitive line, V79- AL162 /S-10, was affected to a lesser extent than the normal cells. Cells repaired the radiation damage with which the inhibitors interacted within 1 hr, a process that has similar kinetics to what is observed when a postirradiation treatment with hypertonic buffer is used [H. Utsumi and M. M. Elkind , Radiat . Res. 77, 346-360 (1979)]. However, the sectors of damage affected by inhibitors of poly(ADP-ribose) synthesis and hypertonic buffer do not entirely overlap. The inhibitor nicotinamide enhanced the killing mainly of late S-phase cells and did not affect cells at the G1/S border. It is concluded that the repair process(es) involving poly(ADP-ribose) synthesis is important for cell survival in repair-competent cells and that the radiation-sensitive cells that were examined are partially deficient in a repair pathway in which poly(ADP-ribose) participates.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources