Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jul;247(1 Pt 2):F151-7.
doi: 10.1152/ajprenal.1984.247.1.F151.

Proximal tubular Na, Cl, and HCO3 reabsorption and renal oxygen consumption

Proximal tubular Na, Cl, and HCO3 reabsorption and renal oxygen consumption

S W Weinstein et al. Am J Physiol. 1984 Jul.

Abstract

The majority of the oxygen consumed by the rat kidney appears to occur in the proximal tubule. Therefore changes in metabolically linked ion transport in this segment of the nephron should result in changes in renal oxygen consumption. To study the role of bicarbonate reabsorption in metabolically linked proximal tubular ion transport a series of micropuncture-clearance-extraction experiments were performed comparing the effects of the carbonic anhydrase inhibitor benzolamide and of hypertonic sodium bicarbonate infusion with control conditions in the rat. End-proximal tubular fluid and chloride reabsorption were measured. From these, the rates of sodium and bicarbonate reabsorption were estimated. Simultaneously with the tubular fluids, extraction collections were obtained for determination of renal oxygen consumption. Both benzolamide and hypertonic bicarbonate reduced proximal tubular fluid reabsorption while concomitantly reducing the transepithelial gradient for chloride. The mean rate of renal oxygen consumption did not differ from the control rate in either experimental group and could be dissociated from the calculated net rates of proximal tubular sodium, chloride, and bicarbonate reabsorption. We interpret these data as evidence that proximal tubular hydrogen ion secretion supporting bicarbonate reabsorption requires at most small amounts of oxidative energy, less than detectable by these techniques. The data, in contrast, support the conclusion that the chloride-bicarbonate transepithelial gradient appears to be an important passive driving force in vivo for proximal tubular fluid reabsorption.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources