Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jul;232(1):269-79.
doi: 10.1016/0003-9861(84)90543-5.

Characterization of bovine brain calmodulin-dependent protein phosphatase

Characterization of bovine brain calmodulin-dependent protein phosphatase

E A Tallant et al. Arch Biochem Biophys. 1984 Jul.

Abstract

Calmodulin-dependent protein phosphatase of bovine brain exhibited a pH optimum of 7 and appeared to require sulfhydryl groups for activity. Phosphatase activity was inhibited by both NaF and ZnCl2, but was stimulated approximately 2-fold by MnCl2. The enzyme exhibited broad substrate specificity, dephosphorylating casein, troponin I, protamine, histone, and phosvitin, and was not phosphorylated by cAMP-dependent protein kinase. With 32P-labeled casein as a substrate, phosphatase was activated 15-fold by calmodulin; the dissociation constant of phosphatase for calmodulin was 30 nM. Activation of the enzyme by calmodulin as a function of Ca2+ was highly cooperative; the Hill coefficient was 4.9. At a saturating concentration of calmodulin, half-maximal activation of phosphatase was obtained at 0.3 microM Ca2+. Calmodulin increased the Vmax from 1.7 to 41 nmol mg protein-1 min-1 with no significant change in its Km. Formation of a Ca2+-dependent complex between calmodulin and the phosphatase was demonstrated by a calmodulin-Sepharose affinity column, gel-filtration chromatography, and sedimentation on a sucrose density gradient. The rate of formation and dissociation of the calmodulin X phosphatase complex was rapid and readily reversible in response to changes in Ca2+ concentration. The calmodulin X phosphatase complex consists of 1 mol of calmodulin and 1 mol of phosphatase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources