Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Feb:275:507-20.
doi: 10.1113/jphysiol.1978.sp012204.

Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline

Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline

N Iwatsuki et al. J Physiol. 1978 Feb.

Abstract

1. Intracellular micro-electrode recordings were made from surface acini of mouse exorbital lacrimal glands placed in a Perspex bath through which oxygenated physiological saline solutions were circulated. Two micro-electrodes were inserted into neighbouring communicating cells. Through one of the electrodes, current pulses could be injected. The cells impaled were stimulated by iontophoresis of acetylcholine (ACh), adrenaline or isoprenaline from an extracellular micropipette. 2. During exposure to standard Krebs solution the resting membrane potential was -42.5 mV +/- 1.2 and the resting input resistance 3.3 Momega +/- 0.3. When the tips of the two intracellular micro-electrodes were more than 100 micrometer apart no electrical coupling between two impaled cells could be detected. At intertip distances below about 80 micrometer coupling was frequently observed. In all such cases the coupling ratio was 1. The resting current-voltage relation was almost linear within the membrane potential range of -30 to -80 mV. 3. During exposure to standard Krebs solution the resting membrane potential was -42.5 mV +/- 1.2 and the resting input resistance 3.3 Momega +/- 0.3. When the tips of the two intracellular micro-electrodes were more than 100 micrometer apart no electrical coupling between two impaled cells could be detected. At intertip distances below about 80 micrometer coupling was frequently observed. In all such cases the coupling ratio was 1. The resting current-voltage relation was almost linear within the membrane potential range of -30 to -80mV. 3. During exposure to standard Krebs solution short iontophoretic pulses of ACh or adrenaline caused fully reversible hyperpolarizations accompanied by marked reduction of surface cell membrane resistance and membrane time constant. The effects of ACh were blocked by atropine (1.4 x 10(-6)M). Iontophoresis of isoprenaline never had any detectable effect on membrane potential or resistance. 4. Applying de- or hyperpolarizing direct currents through one of the two intracellular micro-electrodes the effect of ACh or adrenaline could be observed at different lvels of resting potential. Depolarizing the acinar cell membrane resulted in an enhanced stimulant-evoked hyperpolarization whereas hyperpolarizing the acinar cell membrane resulted in a reduction, and at potentials more negative than -60 mV in a reversal of the stimulant-evoked potential change. The ACh equilibrium potential (EACh) under control conditions was -56.6 mV +/- 1.1 and EAdrenaline was -61.4 mV +/- 1.0. 5. Replacing the control superfusion solution by a Clfree sulphate solution resulted in an immediate shift of EACh towards more negative values. At steady state in the Cl-free solution the resting input resistance was 6.8 Momega +/- 1.3 EACh was -95.9 mV +/- 3.4. 6. Reducing [K]o from the usual 4.7 to 1.0 mM resulted in an immediate marked increase in the amplitude of ACh-evoked hyperpolarization whereas increasing [K]o to 10 mM almost abolished the ACh-evoked potential, but not resistance change. 7...

PubMed Disclaimer

Similar articles

Cited by

References

    1. Physiol Rev. 1976 Jul;56(3):535-77 - PubMed
    1. J Physiol. 1975 May;247(2):461-71 - PubMed
    1. Biochim Biophys Acta. 1977 Aug 1;468(3):353-63 - PubMed
    1. J Physiol. 1976 Jan;254(3):583-606 - PubMed
    1. J Physiol. 1977 Aug;269(3):723-33 - PubMed

LinkOut - more resources