Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Oct;311(5985):467-9.
doi: 10.1038/311467a0.

Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors

Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors

R E Heikkila et al. Nature. 1984 Oct.

Abstract

1-Methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP) causes degeneration of the dopaminergic nigrostriatal pathway in several animal species, including humans, monkeys and mice. Changes observed after MPTP administration include marked decrements in the neostriatal content of dopamine and its major metabolites, dihydroxyphenylacetic acid and homovanillic acid, and a greatly diminished capacity of neostriatal synaptosomes to take up 3H-dopamine. In contrast, there is no pronounced loss of serotonin in the neostriatum or of dopamine and its metabolites in other brain areas in MPTP-treated animals. The oxidative metabolism of MPTP to 1-methyl-4-phenyl pyridine, a positively charged species, has been suggested as a critical feature in the neurotoxic process. Moreover, in rat brain preparations, the monoamine oxidase (MAO) inhibitor pargyline and the specific MAO-B inhibitor deprenil can prevent the formation of 1-methyl-4-phenyl-pyridine from MPTP, while the specific MAO-A inhibitor clorgyline has no such effect, suggesting that MAO, and specifically MAO-B, is responsible for the oxidative metabolism of MPTP. We now report that pargyline, nialamide and tranylcypromine, which inhibit both MAO-A and MAO-B, when administered to mice before MPTP, protect against MPTP-induced dopaminergic neurotoxicity. Deprenil is also protective, but clorgyline is not. Our data are consistent with the premise that MAO-B has a crucial role in MPTP-induced degeneration of the nigrostriatal dopaminergic neuronal pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources