Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Dec;62(12):1511-7.
doi: 10.1139/y84-250.

Effect of temperature and Zn2+ on isometric contractile properties and electrical phenomena of frog (Rana) and Xenopus skeletal muscle fibers

Effect of temperature and Zn2+ on isometric contractile properties and electrical phenomena of frog (Rana) and Xenopus skeletal muscle fibers

T Oba et al. Can J Physiol Pharmacol. 1984 Dec.

Abstract

Effects of temperature and Zn2+ on the isometric contractile properties of toe muscle fibers of Rana catesbeiana and Xenopus laevis were studied. The maximum twitch tension almost doubled when the temperature was lowered from 20 to 4 degrees C in Rana muscles but not in Xenopus muscles, although the duration of action potential in Xenopus muscle was increased slightly more than that seen in the Rana species. The maximum rate of rise of tension was greater in Xenopus muscle than in the Rana muscle, at 20 degrees C. The prolongation of the time-to-peak tension following exposure to low temperature (4 degrees C) was more pronounced in Rana than in Xenopus muscles. These results suggest that the speed of release and reuptake of Ca2+ by the sarcoplasmic reticulum (SR) differs in Rana and Xenopus muscles and that these factors may be related to differences in the SR and the T-tubular morphology. In Rana muscles, Zn2+ prolonged the falling phase of the action potential and potentiated the twitch tension. In Xenopus muscles, Zn2+ marginally prolonged the duration of action potential and the twitch tension was not markedly potentiated. These results indicate that Zn2+ potentiates the twitch by prolonging the action potential and that Rana muscles are more sensitive to the effects of Zn2+.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources