Excretion of flagellin by a short-flagella mutant of Salmonella typhimurium
- PMID: 6336739
- PMCID: PMC217399
- DOI: 10.1128/jb.153.1.506-510.1983
Excretion of flagellin by a short-flagella mutant of Salmonella typhimurium
Abstract
A nonmotile mutant of Salmonella typhimurium, SJW1254, has very short flagella (less than 0.1 micron long) due to a mutation in the structural gene of flagellin (H2). When ammonium sulfate was added to the culture medium of SJW1254 grown to the late-log phase, a large amount of protein precipitated. Gel electrophoresis and immunodiffusion showed that more than 90% (wt/wt) of the precipitated protein was flagellin. The mutant flagellin appeared to be excreted in the monomeric form, in an amount comparable to the amount in the flagellar filaments of wildtype bacteria. No such precipitate was obtained from the medium of wild-type bacteria. The mutant flagellin had the same apparent molecular weight (55,000) and isoelectric point (5.3) as the wild-type flagellin, but differed in mobility in polyacrylamide gel electrophoresis under nondenaturing conditions. Moreover, the mutant flagellin did not polymerize in vitro under various conditions in which wild-type flagellin polymerized. These results suggested that the mutant bacteria excreted flagellin because the flagellin polymerized poorly and therefore could not be trapped at the tip of the flagellar filament. This short-flagella mutant should be useful for studying the mechanism of flagellin transport.
Similar articles
-
In vitro polymerization of flagellin excreted by a short-flagellum Salmonella typhimurium mutant.J Bacteriol. 1984 Aug;159(2):787-9. doi: 10.1128/jb.159.2.787-789.1984. J Bacteriol. 1984. PMID: 6378893 Free PMC article.
-
Excretion of unassembled flagellin by Salmonella typhimurium mutants deficient in hook-associated proteins.J Bacteriol. 1984 Sep;159(3):1056-9. doi: 10.1128/jb.159.3.1056-1059.1984. J Bacteriol. 1984. PMID: 6384179 Free PMC article.
-
Flagellar growth in a filament-less Salmonella fliD mutant supplemented with purified hook-associated protein 2.J Biochem. 1993 Jul;114(1):39-44. doi: 10.1093/oxfordjournals.jbchem.a124136. J Biochem. 1993. PMID: 8407873
-
Growth mechanism of the bacterial flagellar filament.Res Microbiol. 2002 May;153(4):191-7. doi: 10.1016/s0923-2508(02)01308-6. Res Microbiol. 2002. PMID: 12066889 Review.
-
Spinning tails.Curr Opin Struct Biol. 1995 Apr;5(2):187-93. doi: 10.1016/0959-440x(95)80074-3. Curr Opin Struct Biol. 1995. PMID: 7648320 Review.
Cited by
-
Application of a short, disordered N-terminal flagellin segment, a fully functional flagellar type III export signal, to expression of secreted proteins.Appl Environ Microbiol. 2010 Feb;76(3):891-9. doi: 10.1128/AEM.00858-09. Epub 2009 Dec 11. Appl Environ Microbiol. 2010. PMID: 20008166 Free PMC article.
-
Regions of Salmonella typhimurium flagellin essential for its polymerization and excretion.J Bacteriol. 1987 Jan;169(1):291-6. doi: 10.1128/jb.169.1.291-296.1987. J Bacteriol. 1987. PMID: 3539920 Free PMC article.
-
In vitro polymerization of flagellin excreted by a short-flagellum Salmonella typhimurium mutant.J Bacteriol. 1984 Aug;159(2):787-9. doi: 10.1128/jb.159.2.787-789.1984. J Bacteriol. 1984. PMID: 6378893 Free PMC article.
-
Morphology-controlled synthesis of silica nanotubes through pH- and sequence-responsive morphological change of bacterial flagellar biotemplates.J Mater Chem. 2012;22:15702-15709. doi: 10.1039/C2JM31034A. Epub 2012 May 21. J Mater Chem. 2012. PMID: 22865955 Free PMC article.
-
Potent immunoregulatory effects of Salmonella typhi flagella on antigenic stimulation of human peripheral blood mononuclear cells.Infect Immun. 1999 Mar;67(3):1338-46. doi: 10.1128/IAI.67.3.1338-1346.1999. Infect Immun. 1999. PMID: 10024580 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources