Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Feb 10;258(3):1714-9.

Release of transcript and template during transcription termination at the trp operon attenuator

  • PMID: 6337143
Free article

Release of transcript and template during transcription termination at the trp operon attenuator

V Berlin et al. J Biol Chem. .
Free article

Abstract

We studied release of trp leader RNA and trp template DNA from RNA polymerase during transcription termination at the attenuator of the trp operon of Escherichia coli. Preliminary evidence had suggested that a stable ternary complex was formed at the trp attentuator. We observed that the complexes between RNA polymerase and trp leader RNA and the DNA template produced during transcription were labile at high salt concentrations and were undetectable when transcription was performed in the presence of heparin. These characteristics are atypical of the stable transcription termination complexes described by others (Richardson, J. P., and Conaway, R. (1980) Biochemistry 19, 4293-4299; Shigesada, K., and Wu, C. (1980) Nucleic Acids Res. 8, 3355-3369). We successfully reconstituted polymerase-trp leader RNA complexes in simple mixing experiments; these and other studies indicated that it is core polymerase that binds the leader transcript and the DNA template. In agreement with this conclusion, it was observed that sigma factor inhibited binding of RNA polymerase to the trp leader transcript and the DNA template and displaced leader RNA from RNA polymerase during transcription. It seems likely that small amounts of core polymerase present in the holoenzyme preparation, or generated during transcription, are responsible for the nonspecific binding of RNA transcript and DNA template. Our findings, therefore, suggest that the transcription termination event at the trp attenuator normally involves spontaneous dissociation of polymerase, template, and RNA transcript.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources