Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1983 Apr;117(1-2):113-25.
doi: 10.1016/0165-1218(83)90158-1.

Modulation of aromatic amine mutagenicity in Salmonella typhimurium with rat-liver 9000 g supernatant or monolayers of rat hepatocytes as an activation system

Comparative Study

Modulation of aromatic amine mutagenicity in Salmonella typhimurium with rat-liver 9000 g supernatant or monolayers of rat hepatocytes as an activation system

J A Holme et al. Mutat Res. 1983 Apr.

Abstract

2-Aminofluorene (AF), 2-acetylaminofluorene (AAF) and N-hydroxy-2-acetylaminofluorene (N-OH-AAF) were studied for mutagenic activity in S. typhimurium and either liver 9000 g supernatant fractions (S9) or monolayer cultures of hepatocytes isolated from Wistar rats were used as an activation system. All 3 compounds were converted into mutagens excreted into the incubation medium by the cell-culture system, with N-OH-AAF greater than AF greater than AAF. Cultures used 24 h after plating were less efficient in promutagen conversion than were cultures used after 2 h. Phenobarbital, but not 3-methylcholanthrene, pretreatment of the rats caused similar effects on AF, AAF and N-OH-AAF mutagenicity with both S9 and hepatocyte cultures. The mutagenicities of AF and AAF were reduced by the cytochrome-P-450 inhibitors metyrapone and alpha-naphthoflavone, whereas the mutagenicity of N-OH-AAF was increased by using both inhibitors. Further, the microsomal deacetylase inhibitor paraoxon caused only a moderate reduction in N-OH-AAF mutagenicity, but a total inhibition of AAF mutagenicity. No significant effect of paraoxon on AF mutagenicity was seen. With the S9 system, no effect of ascorbate on the mutagenicity of AF, AAF or N-OH-AAF was observed. In contrast, the mutagenicity of all 3 compounds was increased by ascorbate when hepatocyte cultures were used as activation system. Incubation of hepatocyte monolayers in a sulfate-free medium did not change the mutagenicity of AF, AAF or N-OH-AAF. Galactosamine, an inhibitor of glucuronidation in cells, increased the mutagenicity of AF, AAF and N-OH-AAF with hepatocyte cultures. The addition of cofactor for glucuronidation in the S9 system, however, had no effect. A reduction in mutagenicity of AF and AAF, but not that of N-OH-AAF, was observed with the addition of glutathione (GSH) in both the S9 and the hepatocyte systems. On the other hand, no effect of cellular GSH depletion was seen on aromatic-amine mutagenicity in the hepatocyte system. The data indicate that the hepatocyte culture system offers advantages over the conventional liver-sub-fraction activation system as a model, in vivo, for the metabolism of the aromatic amine mutagens/carcinogens.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources