Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1983:15:49-89.
doi: 10.1016/b978-0-12-364376-6.50009-0.

The partitioning of cytoplasmic organelles at cell division

Review

The partitioning of cytoplasmic organelles at cell division

C W Birky Jr. Int Rev Cytol Suppl. 1983.

Abstract

When an organism has only one or two mitochondria or chloroplasts per cell, it is probable that their partitioning is always stringently controlled so that each daughter cell always receives half the organelles in the parent cell. When there are more copies of an organelle, the available data suggest that partitioning is stochastic but far from random, with a strong tendency toward equality. The molecular mechanisms that promote equal partitioning are not known in any case, but the great variety of organelle behavior suggests that many different mechanisms are involved in different organisms. As Wilson (1925) pointed out, the precision of partitioning of cytoplasmic organelles rarely if ever equals that of mitosis, but it is still an expression of selection for mechanisms that will ensure the hereditary continuity of the organelles. How cells compensate for unequal partitioning by controlling organelle replication is known for only one case. But when one considers that Tetrahymena and Paramecium use different methods to compensate for unequal partitioning of macronuclear DNA, it would not be surprising if organisms use a variety of different compensating replication modes for organelles as well. What is surprising is that so little attention has been paid to these problems. Nothing could be simpler than counting organelles in dividing cells, but this has been done on a large scale in only two systems. Quantitative techniques in cell biology have been developed to the point where such studies could be done even on cells that have too many organelles for direct counting. Molecular mechanisms of partitioning have scarcely been touched on. Much more has been done on the role of the cytoskeleton in determining cell shape, and some observations have been made on its role in positioning organelles in interphase cells, but these kinds of studies have not been extended to dividing cells. Some experiments and observations have been made on the role of microtubules and microfilaments in moving cytoplasmic organelles around the cell during interphase, but again nothing has been done on their possible role in partitioning organelles at cytokinesis. The major lesson of this article is how little has been done, and how much can be done. The partitioning of cytoplasmic organelles at cell division is a wide-open field for future research, and one of great importance for both genetics and cell biology.

PubMed Disclaimer

Publication types

LinkOut - more resources