Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Jul;72(1):201-13.
doi: 10.1172/jci110958.

Isolation and characterization of a mutant liver aldolase in adult hereditary fructose intolerance. Identification of the enzyme variant by radioassay in tissue biopsy specimens

Isolation and characterization of a mutant liver aldolase in adult hereditary fructose intolerance. Identification of the enzyme variant by radioassay in tissue biopsy specimens

T M Cox et al. J Clin Invest. 1983 Jul.

Abstract

Hereditary fructose intolerance (HFI) is a metabolic disorder caused by enzymic deficiency of aldolase B, a genetically distinct cytosolic isoenzyme expressed exclusively in liver, kidney, and intestine. The molecular basis of this enzyme defect has been investigated in three affected individuals from a nonconsanguineous kindred, in whom fructose-l-phosphate aldolase activities in liver or intestinal biopsy samples were reduced to 2-6% of mean control values. To identify a putative enzyme mutant in tissue extracts, aldolase B was purified from human liver by affinity chromatography and monospecific antibodies were prepared from antiserum raised in sheep. Immunodiffusion gels showed a single precipitin line common to pure enzyme and extracts of normal liver and intestine, but no reaction with extracts of brain, muscle, or HFI liver. However, weak positive staining for aldolase in hepatocyte and enterocyte cytosol was demonstrated by indirect immunofluorescence of HFI tissues. This was abolished by pretreatment with pure enzyme protein. Accordingly, a specific radioimmunoassay (detection limit 7.5 ng) was established to quantify immunoreactive aldolase B in human biopsy specimens. Extracts of tissue from affected patients gave 10-25% immunoreactive enzyme in control samples; immunoreactive aldolase in intestinal extracts from four heterozygotes was reduced (to 55%) when compared with seven samples from normal control subjects (P < 0.05). In extracts of HFI tissues, there was a sevenfold reduction in apparent absolute specific activity (1.02 vs. 8.82 U/mg) of immunoreactive fructose-l-phosphate aldolase B, but the apparent specific activity in heterozygotes (7.71 U/mg) was only slightly impaired. Displacement radioimmunotitration of aldolase B in liver supernatants showed a significant (P < 0.005) decrease in antibody avidity for immunoreactive protein in HFI tissue when compared with the pure enzyme or extract of normal control liver. Immunoaffinity chromatography on antialdolase B-Sepharose facilitated isolation and purification of enzyme from liver biopsy specimens. Active aldolase in normal liver, with substrate activity ratios and Michaelis constants identical to biochemically purified human enzyme, could be recovered from antibody columns. Chromatography on monospecific Fab' antialdolase B enabled pure enzyme protein to be retrieved quantitatively from normal control and HFI liver: direct chemical assay showed 1.88 and 1.15 mg aldolase protein/g of tissue, respectively. This confirmed that the catalytic properties of the HFI aldolase were profoundly impaired with specific activities of fructose-l-phosphate cleavage of 7.21 and 0.07 U/mg, respectively. Radioimmunoassay gave estimates of 7.66 and 1.18 U/mg, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that immunopurified aldolase from HFI liver possessed a single subunit size similar to material from control liver extracts: M(r) 39,100 vs. 37,900+/-700 (SD) D, respectively. Electrofocusing under denaturing conditions of aldolase isolated in parallel from control and HFI liver revealed the same complement of subunits and, despite qualitative differences in distribution of bands during degradation, no additional charged species. Fructose phosphate aldolase deficiency in hereditary fructose intolerance is attended by the synthesis of an immunoreactive, but functionally and structurally modified enzyme variant that results from a restricted genetic mutation.

PubMed Disclaimer

Similar articles

Cited by

References

    1. N Engl J Med. 1982 Aug 26;307(9):537-40 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. J Biol Chem. 1981 Oct 25;256(20):10306-12 - PubMed
    1. Biochem Biophys Res Commun. 1982 Jan 29;104(2):369-75 - PubMed
    1. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1455-62 - PubMed

Publication types