Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1983 Jul;66(7):1536-46.
doi: 10.3168/jds.S0022-0302(83)81970-5.

Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria

Free article
Review

Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria

C J Smith et al. J Dairy Sci. 1983 Jul.
Free article

Abstract

Over the last decade, developments in recombinant deoxyribonucleic acid techniques and molecular biology have revolutionized bacterial genetics, creating vast, new potential uses of bacteria (as well as animal and plant cells) that were not even considered previously. Bacterial production of hormones is but one example. With bacterial species with well developed genetic systems, such as Escherichia coli, it is now possible genetically to "design" or "engineer" bacterial strains having specific characteristics. One reasonable future approach toward improvement of animal agriculture would be manipulation of the rumen ecosystem via the use of genetically modified ruminal bacteria, but significant obstacles exist with this approach. Genetic systems of ruminal and of anaerobic bacteria of the mammalian gastrointestinal tract, in general, have not been studied and are largely unknown. In this paper, the various criteria for possible establishment of recombinant deoxyribonucleic acid systems in ruminal bacteria are outlined. Secondly, applications for utilizing genetically engineered ruminal bacteria to control digestion of specific feedstuffs, to regulate specific fermentation products, and to control growth of specific bacterial species are discussed.

PubMed Disclaimer

LinkOut - more resources