Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions
- PMID: 6364985
- DOI: 10.1016/0003-9861(84)90040-7
Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions
Abstract
Glutathione reductase from Saccharomyces cerevisiae was rapidly inactivated following aerobic incubation with NADPH, NADH, and several other reductants, in a time- and temperature-dependent process. The inactivation had already reached 50% when the NADPH concentration reached that of the glutathione reductase subunit. The inactivation was very marked at pH values below 5.5 and over 7, while only a slight activity decrease was noticed at pH values between these two values. After elimination of excess NADPH the enzyme remained inactive for at least 4 h. The enzyme was protected against redox inactivation by low concentrations of GSSG, ferricyanide, GSH, or dithiothreitol, and high concentrations of NAD(P)+; oxidized glutathione effectively protected the enzyme at concentrations even lower than GSH. The inactive enzyme was efficiently reactivated after incubation with GSSG, ferricyanide, GSH, or dithiothreitol, whether NADPH was present or not. The reactivation with GSH was rapid even at 0 degree C, whereas the optimum temperature for reactivation with GSSG was 30 degrees C. A tentative model for the redox interconversion, involving an erroneous intramolecular disulfide bridge, is put forward.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
