Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Apr;230(1):110-6.
doi: 10.1016/0003-9861(84)90091-2.

Acylation of plant acyl carrier proteins by acyl-acyl carrier protein synthetase from Escherichia coli

Acylation of plant acyl carrier proteins by acyl-acyl carrier protein synthetase from Escherichia coli

T M Kuo et al. Arch Biochem Biophys. 1984 Apr.

Abstract

The acyl-acyl carrier protein synthetase from Escherichia coli has been examined for its ability to specifically acylate acyl carrier protein (ACP) from higher plants in order to develop an assay for plant ACP, and to prepare labeled acyl-ACP of plant origin. It was found that the E. coli enzyme was able to acylate ACP from spinach, soybean, avocado, corn, and several other plants. The acylation was very specific because, in crude extracts of spinach leaves where ACP represented approximately 0.1% of the total soluble protein, ACP was shown to be the only protein acylated. In contrast to other E. coli enzymes that display 2- to 10-fold lower rates with plant versus bacterial ACP, the kinetic constants (Km and Vmax) for acyl-ACP synthetase were found to be essentially identical for spinach and E. coli ACP when acylated with palmitic acid. Palmitic, myristic, lauric, stearic, and oleic acid could all be esterified to both spinach and E. coli ACP with similar specificity. Procedures are described that allow the assay of ACP in plant extracts at the nanogram level.

PubMed Disclaimer

LinkOut - more resources