Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 May;246(5 Pt 2):F620-6.
doi: 10.1152/ajprenal.1984.246.5.F620.

Interaction between neural and nonneural mechanisms controlling renin secretion rate

Interaction between neural and nonneural mechanisms controlling renin secretion rate

U C Kopp et al. Am J Physiol. 1984 May.

Abstract

The interaction between the neural and nonneural mechanisms in the control of renin secretion rate was studied in anesthetized vagotomized dogs at renal arterial pressures of 170, 130, 90, and 50 mmHg. Left renal nerves were stimulated (RNS) at either 0.075, 0.3, or 0.7 Hz and the right kidney was denervated. At spontaneous renal arterial pressure RNS at 0.075, 0.3, and 0.7 Hz decreased renal blood flow 0, 1 +/- 0, and 2 +/- 1%, respectively, and urinary sodium excretion 0, 2 +/- 1, and 22 +/- 3%, respectively. RNS at 0.075 Hz augmented renin secretion rate at 50 mmHg by 1,806 +/- 505 ng/min; there was no augmentation at 90, 130, and 170 mmHg. RNS at 0.3 Hz augmented renin secretion rate at 50 and 90 mmHg by 2,635 +/- 824 and 1,197 +/- 289 ng/min, respectively; there was no augmentation at 130 and 170 mmHg. RNS at 0.7 Hz augmented renin secretion rate at 50, 90, and 130 mmHg by 1,421 +/- 287, 747 +/- 172, and 273 +/- 163 ng/min, respectively; there was no augmentation at 170 mmHg. RNS at 0.075 Hz to one kidney and 0.7 Hz to the other kidney in the same dog demonstrated that the renin secretion rate was greater with RNS at 0.7 Hz than with 0.075 Hz at 50 and 90 mmHg but not at 130 and 170 mmHg. We conclude that the nonneural and neural mechanisms interact in the control of renin secretion rate. The degree of interaction depends on the level of renal arterial pressure and the intensity of RNS.

PubMed Disclaimer

Publication types

LinkOut - more resources