Identification of genes and gene products necessary for bacterial bioluminescence
- PMID: 6377310
- PMCID: PMC345387
- DOI: 10.1073/pnas.81.13.4154
Identification of genes and gene products necessary for bacterial bioluminescence
Abstract
Expression of luminescence in Escherichia coli was recently achieved by cloning genes from the marine bacterium Vibrio fischeri. One DNA fragment on a hybrid plasmid encoded regulatory functions and enzymatic activities necessary for light production. We report the results of a genetic analysis to identify the luminescence genes (lux) that reside on this recombinant plasmid. lux gene mutations were generated by hydroxylamine treatment, and these mutations were ordered on a linear map by complementation in trans with a series of polar transposon insertions on other plasmids. lux genes were defined by complementation of lux gene defects on pairs of plasmids in trans in E. coli. Hybrid plasmids were also used to direct the synthesis of polypeptides in the E. coli minicell system. Seven lux genes and the corresponding gene products were identified from the complementation analysis and the minicell programing experiments. These genes, in the order of their position on a linear map, and the apparent molecular weights of the gene products are luxR (27,000), luxI (25,000), luxC (53,000), luxD (33,000), luxA (40,000), luxB (38,000), and luxE (42,000). From the luminescence phenotypes of E. coli containing mutant plasmids, functions were assigned to these genes: luxA, luxB, luxC, luxD, and luxE encode enzymes for light production and luxR and luxI encode regulatory functions.
Similar articles
-
Control of the lux regulon of Vibrio fischeri.J Biolumin Chemilumin. 1990 Apr-Jun;5(2):99-106. doi: 10.1002/bio.1170050205. J Biolumin Chemilumin. 1990. PMID: 2186599
-
Cloning and expression of the Photobacterium phosphoreum luminescence system demonstrates a unique lux gene organization.J Biol Chem. 1988 Oct 5;263(28):14308-14. J Biol Chem. 1988. PMID: 3049575
-
Cell density-dependent modulation of the Vibrio fischeri luminescence system in the absence of autoinducer and LuxR protein.J Bacteriol. 1992 Apr;174(8):2440-8. doi: 10.1128/jb.174.8.2440-2448.1992. J Bacteriol. 1992. PMID: 1313412 Free PMC article.
-
Biochemistry and genetics of bacterial bioluminescence.Adv Biochem Eng Biotechnol. 2014;144:37-64. doi: 10.1007/978-3-662-43385-0_2. Adv Biochem Eng Biotechnol. 2014. PMID: 25084994 Review.
-
Molecular Mechanisms of Bacterial Bioluminescence.Comput Struct Biotechnol J. 2018 Nov 15;16:551-564. doi: 10.1016/j.csbj.2018.11.003. eCollection 2018. Comput Struct Biotechnol J. 2018. PMID: 30546856 Free PMC article. Review.
Cited by
-
A LysR Family Transcriptional Regulator Modulates Burkholderia cenocepacia Biofilm Formation and Protease Production.Appl Environ Microbiol. 2021 May 26;87(12):e0020221. doi: 10.1128/AEM.00202-21. Epub 2021 May 26. Appl Environ Microbiol. 2021. PMID: 33811025 Free PMC article.
-
CqsA/LuxS-HapR Quorum sensing circuit modulates type VI secretion system VflT6SS2 in Vibrio fluvialis.Emerg Microbes Infect. 2021 Dec;10(1):589-601. doi: 10.1080/22221751.2021.1902244. Emerg Microbes Infect. 2021. PMID: 33689580 Free PMC article.
-
Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi.J Bacteriol. 1990 Jun;172(6):2946-54. doi: 10.1128/jb.172.6.2946-2954.1990. J Bacteriol. 1990. PMID: 2160932 Free PMC article.
-
Luminescence-based nonextractive technique for in situ detection of Escherichia coli in soil.Appl Environ Microbiol. 1990 Nov;56(11):3368-74. doi: 10.1128/aem.56.11.3368-3374.1990. Appl Environ Microbiol. 1990. PMID: 2268151 Free PMC article.
-
Formation of the LuxR protein in the Vibrio fischeri lux system is controlled by HtpR through the GroESL proteins.J Bacteriol. 1992 Nov;174(22):7138-43. doi: 10.1128/jb.174.22.7138-7143.1992. J Bacteriol. 1992. PMID: 1429436 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases