Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Dec;26(4):145-54.

Action of tetanus toxin on cholinergic neuroblastoma X glioma hybrid cells: selective blockade of Ca spikes

  • PMID: 6378174

Action of tetanus toxin on cholinergic neuroblastoma X glioma hybrid cells: selective blockade of Ca spikes

N Sugimoto et al. Biken J. 1983 Dec.

Abstract

We examined the effect of tetanus toxin on clonal neuroblastoma X glioma hybrid cells, NG108-15, by intracellular microelectrode studies of passive membrane electrical properties and action potentials generated under various conditions. Binding of tetanus toxin to the surface of the cells was demonstrated by indirect immunofluorescent staining but no morphological alteration was observed in tetanus toxin-treated cells under a phase contrast microscope. These is no significant difference between the tetanus toxin-treated and untreated cells in their passive electrical membrane properties, i.e. resting membrane potentials, input resistances, time constants and input capacities. Cells in 120 mM Na+, 2 mM Ca2+ salt solution showed Na spikes, and cells in high Ca2+ (30 mM), Na+-free salt solution showed Ca spikes in response to depolarizing current pulses. While the Na spike was not affected by tetanus toxin, the Ca spike was blocked by the toxin. The minimum dose of tetanus toxin for maximum suppression of the peak potential level of the Ca spike was 250 ng/ml. Addition of tetraethyl ammonium (TEA) to extracellular fluid enhanced the Ca spike in untreated cells. In toxin-treated cells, TEA did not alter the effect of tetanus toxin on the Ca spike. Blockade of the Ca spike by tetanus toxin could be detected even at low extracellular Ca2+ concentration (10 mM) by adding TEA to the extracellular fluid and adjusting the membrane potential to a steady hyperpolarized level (-80 mV) to ensure optimal and uniform electrical responses. The usefulness of NG108-15 hybrid cells for in vitro investigations on the mechanism of action of tetanus toxin was discussed.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources