Competition between the 735 nm fluorescence and the photochemistry of Photosystem I in chloroplasts at low temperature
- PMID: 638135
- DOI: 10.1016/0005-2728(78)90135-4
Competition between the 735 nm fluorescence and the photochemistry of Photosystem I in chloroplasts at low temperature
Abstract
Fluorescence emission spectra of chloroplasts, initially frozen to--196 degrees C, were measured at various temperatures as the sample was allowed to warm. The 735 nm emission band attributed to fluorescence from Photosystem I was approx. 10-fold greater at--196 degrees C than at--78 degrees C. The initial rate of photooxidation of P-700 was also measured at--196 degrees C and--78 degrees C and was found to be approximately twice as large at the higher temperature. It is proposed that the 735 nm emission band is fluorescence from a long wavelength form of chlorophyll, C-705, which acts as a trap for excitation energy in the antenna chlorophyl system of Photosystem I. Furthermore, it is proposed that C-705 only forms on cooling to low temperatures and that the temperature dependence of the 735 nm emission is the temperature dependence for the formation of C-705. C-705 and P-700 compete to trap the excitation energy in Photosystem I. It is estimated from the data that at--78 degrees C P-700 traps approx. 20 times more energy than C-705 while, at--196 degrees C, the two traps are approximately equally effective. By analogy, the 695 nm fluorescence which also appears on cooling to--196 degrees C is attributed to traps in Photosystem II which form only on cooling to temperatures near--196 degrees C.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
