The effects of cotyledon senescence on the composition and physical properties of membrane lipid
- PMID: 638142
- DOI: 10.1016/0005-2736(78)90325-5
The effects of cotyledon senescence on the composition and physical properties of membrane lipid
Abstract
The phospholipid content of rough and smooth microsomal fractions from cotyledons of germinating bean declines as the tissue becomes senescent. Both types of membrane contain comparable proportions of three major phospholipids, phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, which collectively comprise about 90% of the total. This proportionality does not change appreciably during senescence. Only small quantities of lysophosphatides were noted at all stages of senescence. The unsaturated:saturated fatty acid ratio for total extracted lipid declined only slightly in both membrane systems, but pronounced differences in this ratio were observed among the major phospholipids of the membranes. The most striking alteration in lipid composition with advancing senescence was an increase in the sterol:phospholipid ratio; this rose by about 50% for rough microsomes and 400% for smooth microsomes. For both types of membrane the patterns of change in this ratio correlated with previously reported changes in bulk lipid transition temperature, suggesting that the increase in sterol level may contribute to changes in phase behaviour of the membranes during senescence. Arrhenius plots of rotational correlation times for the electron spin label 2,2-dimethyl-5-dodecyl-5-methyloxazolidine-N-oxide (2N14) partitioned into the membrane lipid showed an increase in viscosity with advancing senescence and a corresponding increase in activation energy for both types of membrane. These changes in activation energy and viscosity correlated closely with the increase in sterol:phospholipid ratio. However, no phase transitions were detectable between temperatures of 2 and 55 degrees C despite the fact that transitions from a lipid-crystalline to gel state are detectable within this temperature range by wide angle X-ray diffraction.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
