Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 May;51(5):983-9.

Cation permeability alterations during sickling: relationship to cation composition and cellular hydration of irreversibly sickled cells

  • PMID: 638256
Free article

Cation permeability alterations during sickling: relationship to cation composition and cellular hydration of irreversibly sickled cells

B E Glader et al. Blood. 1978 May.
Free article

Abstract

Sickle erythrocytes (RBC) incubated under 100% nitrogen for 4 hr manifested marked Na gain with an equivalent K loss. There were no changes in cell total cation or water content under these conditions, and no irreversible sickle cells (ISC) were formed. In contrast, sickle RBC incubated for 24 hr under 100% nitrogen in a glucose-free Na medium containing calcium manifested marked ISC formation. ISC formed under these conditions also had elevated Na content, although K content was much more reduced, and consequently ISC were cation depleted and dehydrated. When sickle RBC were incubated 24 hr under 100% nitrogen in a glucose-free K medium containing calcium no ISC formed and there were no major changes in cation or water content. These studies indicate that the Na+K content and dehydration of ISC was not directly related to the increased cation permeability associated with sickling. Rather, the ISC changes appear to reflect the well-known Gardos effect (K and water loss occurring in ATP-depleted RBC incubated with calcium). In addition, these studies suggest that ISC formation per se is related to K and water loss, since no ISC were formed when ATP-depleted sickle RBC were deoxygenated in calcium-containing high-K media that prevented K loss and dehydration.

PubMed Disclaimer

Publication types

LinkOut - more resources