Directed evolution of cellobiose utilization in Escherichia coli K12
- PMID: 6400650
- DOI: 10.1093/oxfordjournals.molbev.a040310
Directed evolution of cellobiose utilization in Escherichia coli K12
Abstract
The cellobiose catabolic system of Escherichia coli K12 is being used to study the role of cryptic genes in evolution of new functions. Escherichia coli does not use beta-glucoside sugars; however, mutations in several loci can activate the cryptic bgl operon and permit growth on the beta-glucoside sugars arbutin and salicin. Such Bgl+ mutants do not use cellobiose, which is the most common beta-glucoside in nature. We have isolated a Cel+ (cellobiose-utilizing) mutant from a Bgl+ mutant of E. coli K12. The Cel+ mutant grows well on cellobiose, arbutin, and salicin. Genes for utilization of these beta-glucosides are located at 37.8 min on the E. coli map. The genes of the bgl operon are not involved in cellobiose utilization. Introduction of a deletion covering bgl does not affect the ability to utilize cellobiose, arbutin, or salicin, indicating that the new Cel+ genes provide all three functions. Spontaneous cellobiose negative mutants also become arbutin and salicin negative. Analysis of beta-glucoside positive revertants of these mutants indicates that there are separate loci for utilization of each of the beta-glucoside sugars. The genes are closely linked and may be activated from a single locus. A fourth gene at an unknown location increases the growth rate on cellobiose. The cel genes constitute a second cryptic system for beta-glucoside utilization in E. coli K12.
Similar articles
-
A fourth Escherichia coli gene system with the potential to evolve beta-glucoside utilization.Genetics. 1988 Jul;119(3):485-90. doi: 10.1093/genetics/119.3.485. Genetics. 1988. PMID: 3042507 Free PMC article.
-
Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12.Genetics. 1987 Mar;115(3):419-29. doi: 10.1093/genetics/115.3.419. Genetics. 1987. PMID: 3552873 Free PMC article.
-
Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli.Genetics. 1987 Mar;115(3):431-9. doi: 10.1093/genetics/115.3.431. Genetics. 1987. PMID: 3552874 Free PMC article.
-
Regulation of gene expression: cryptic β-glucoside (bgl) operon of Escherichia coli as a paradigm.Braz J Microbiol. 2015 Mar 4;45(4):1139-44. doi: 10.1590/s1517-83822014000400003. eCollection 2014. Braz J Microbiol. 2015. PMID: 25763016 Free PMC article. Review.
-
Selection, adaptation, and bacterial operons.Genome. 1989;31(1):265-71. doi: 10.1139/g89-044. Genome. 1989. PMID: 2687097 Review.
Cited by
-
Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12.Genetics. 1990 Mar;124(3):455-71. doi: 10.1093/genetics/124.3.455. Genetics. 1990. PMID: 2179047 Free PMC article.
-
Spontaneous point mutations that occur more often when advantageous than when neutral.Genetics. 1990 Sep;126(1):5-16. doi: 10.1093/genetics/126.1.5. Genetics. 1990. PMID: 2227388 Free PMC article.
-
Activation of a cryptic gene by excision of a DNA fragment.J Bacteriol. 1988 Jan;170(1):218-22. doi: 10.1128/jb.170.1.218-222.1988. J Bacteriol. 1988. PMID: 2826393 Free PMC article.
-
Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria.Microbiol Rev. 1993 Sep;57(3):543-94. doi: 10.1128/mr.57.3.543-594.1993. Microbiol Rev. 1993. PMID: 8246840 Free PMC article. Review.
-
Expression of the Cellulomonas fimi cellulase genes cex and cenA from the divergent tet promoters of transposon Tn10.Arch Microbiol. 1990;153(2):129-33. doi: 10.1007/BF00247809. Arch Microbiol. 1990. PMID: 2154164
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases