Contribution of the resonance Raman spectroscopy to the identification of Z DNA
- PMID: 6400824
- DOI: 10.1080/07391102.1984.10507524
Contribution of the resonance Raman spectroscopy to the identification of Z DNA
Abstract
Poly(dG-dC).poly(dG-dC) at low salt concentration (0.1 M NaCl) and at high salt concentration (4.5 M NaCl) has been studied by Raman resonance spectroscopy using two excitation wavelengths: 257 nm and 295 nm. As resonance enhances the intensity of the lines in a proportion corresponding to the square of the molar absorption coefficient, the intensities of the lines with 295 nm wavelength excitation are enhanced about sevenfold during the B to Z transition. With 257 nm excitation wavelength the 1580 cm-1 line of guanosine is greatly enhanced in the Z form whereas with 295 nm excitation several lines are sensitive to the modifications of the conformation: the guanine band around 650 cm-1 and at 1193 cm-1 and the bands of the cytosines at 780 cm-1, 1242 cm-1 and 1268 cm-1. By comparison with the U.V. resonance Raman spectra of DNA, we conclude that resonance Raman spectroscopy allows one to characterize the B to Z transition from one line with 257 nm excitation wavelength and from three lines with 295 nm excitation. The conjoined study of these four lines should permit to observe a few base pairs being in Z form in a DNA.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials