Metal ion binding and conformational transitions in concanavalin A: a structure-function study
- PMID: 6400908
- DOI: 10.1080/07391102.1983.10507497
Metal ion binding and conformational transitions in concanavalin A: a structure-function study
Abstract
The affinity of the lectin Concanavalin A (Con A) for saccharides, and its requirement for metal ions such as Mn2+ and Ca2+, have been known for about 50 years. However the relationship between metal ion binding and the saccharide binding activity of Con A has only recently been examined in detail. Brown et al. (Biochemistry 16, 3883 (1977)) showed that Con A exists as a mixture of two conformational states: a "locked" form and an "unlocked" form. The unlocked form of the protein weakly binds metal ions and saccharide, and is the predominate conformation of demetallized Con A (apo-Con A) at equilibrium. The locked form binds two metal ions per monomer with the resulting complex(es) possessing full saccharide binding activity. Brown and coworkers measured the kinetics of the transition of the unlocked form to the fully metallized locked conformation containing Mn2+ and Ca2+. They also demonstrated that Mn2+ alone could form a locked ternary complex with Con A, and that rapid removal of the ions resulted in a metastable form of apo-Con A in the locked conformation which slowly (hours at 25 degrees C) reverted back to (predominantly) the unlocked conformation. The ability to form either conformation in the absence or presence of metal ions has thus allowed us to explore the relationship between metal ion binding and conformational transitions in Con A as determinants of the saccharide binding activity of the lectin. Based on the kinetics of the transition of unlocked apo-Con A to fully metallized locked Con A, and X-ray crystallographic data, it appears that the transition between the two conformations of Con A involves a cis-trans isomerization of an Ala-Asp peptide bond in the backbone of the protein, near one of the two metal ion binding sites. The relatively large activation energy for the transition (approximately 22 kcal M-1) results in relatively slow interconversions between the conformations (from minutes to days), whereas the equilibria with metal ions and saccharide are rapid. Thus, many metastable complexes can be formed and a variety of transition pathways between the two conformations studied. We have identified and characterized binary, ternary, and quaternary complexes of both conformations of Con A containing Mn2+ and saccharide, and have determined both metal ion and saccharide dissociation constants for all of them, as well as equilibrium and kinetic values for the conformational transitions between them.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Conformation as the determinant of saccharide binding in concanavalin A: Ca2+-concanavalin A complexes.Biochemistry. 1978 Oct 3;17(20):4251-60. doi: 10.1021/bi00613a022. Biochemistry. 1978. PMID: 708710
-
Conformational equilibrium of demetalized concanavalin A.Biochemistry. 1982 Feb 2;21(3):465-9. doi: 10.1021/bi00532a008. Biochemistry. 1982. PMID: 6802178
-
Crystallographic structure of metal-free concanavalin A at 2.5 A resolution.Proteins. 1995 Dec;23(4):510-24. doi: 10.1002/prot.340230406. Proteins. 1995. PMID: 8749847
-
Stoichiometry of manganese and calcium ion binding to concanavalin A.Biochemistry. 1983 Jul 19;22(15):3691-702. doi: 10.1021/bi00284a024. Biochemistry. 1983. PMID: 6615793
-
Protein metal-binding sites.Curr Opin Biotechnol. 1992 Aug;3(4):378-87. doi: 10.1016/0958-1669(92)90166-g. Curr Opin Biotechnol. 1992. PMID: 1368439 Review.
Cited by
-
Two-Step Isolation, Purification, and Characterization of Lectin from Zihua Snap Bean (Phaseolus vulgaris) Seeds.Polymers (Basel). 2019 May 2;11(5):785. doi: 10.3390/polym11050785. Polymers (Basel). 2019. PMID: 31052517 Free PMC article.
-
In silico analysis of molecular mechanisms of legume lectin-induced apoptosis in cancer cells.Cell Prolif. 2013 Feb;46(1):86-96. doi: 10.1111/cpr.12009. Cell Prolif. 2013. PMID: 23294355 Free PMC article.
-
Presenting Precision Glycomacromolecules on Gold Nanoparticles for Increased Lectin Binding.Polymers (Basel). 2017 Dec 14;9(12):716. doi: 10.3390/polym9120716. Polymers (Basel). 2017. PMID: 30966014 Free PMC article.
-
FTY720 mediates activation suppression and G(0)/G (1) cell cycle arrest in a concanavalin A-induced mouse lymphocyte pan-activation model.Inflamm Res. 2012 Jun;61(6):623-34. doi: 10.1007/s00011-012-0454-6. Epub 2012 Mar 10. Inflamm Res. 2012. PMID: 22407397
-
Structural and biochemical analyses of concanavalin A circular permutation by jack bean asparaginyl endopeptidase.Plant Cell. 2021 Aug 31;33(8):2794-2811. doi: 10.1093/plcell/koab130. Plant Cell. 2021. PMID: 34235541 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous