The structure of triple helical poly(U).poly(A).poly(U) studied by Raman spectroscopy
- PMID: 6400914
- DOI: 10.1080/07391102.1984.10507595
The structure of triple helical poly(U).poly(A).poly(U) studied by Raman spectroscopy
Abstract
Using Raman spectroscopy, we examined the ribose-phosphate backbone conformation, the hydrogen bonding interactions, and the stacking of the bases of the poly(U).poly(A).poly(U) triple helix. We compared the Raman spectra of poly(U).poly(A).poly(U) in H2O and D2O with those obtained for single-stranded poly(A) and poly(U) and for double-stranded poly(A).poly(U). The presence of a Raman band at 863 cm-1 indicated that the backbone conformations of the two poly(U) chains are different in the triple helix. The sugar conformation of the poly(U) chain held to the poly(A) by Watson-Crick base pairing is C3' endo; that of the second poly(U) chain may be C2' endo. Raman hypochromism of the bands associated with base vibrations demonstrated that uracil residues stack to the same extent in double helical poly(A).poly(U) and in the triple-stranded structure. An increase in the Raman hypochromism of the bands associated with adenine bases indicated that the stacking of adenine residues is greater in the triple helix than in the double helical form. Our data further suggest that the environment of the carbonyls of the uracil residues is different for the different strands.
Similar articles
-
Structure of Poly (U).poly (A).poly (U).J Biomol Struct Dyn. 2000 Jun;17(6):1023-34. doi: 10.1080/07391102.2000.10506590. J Biomol Struct Dyn. 2000. PMID: 10949169
-
Evidence for Hoogsteen GC base pairs in the proton-induced transition from right-handed to left-handed poly(dG-dC).poly(dG-dC).Biochemistry. 1997 Oct 28;36(43):13241-7. doi: 10.1021/bi971326w. Biochemistry. 1997. PMID: 9341213
-
Temperature dependence of the Raman spectrum of DNA. II. Raman signatures of premelting and melting transitions of poly(dA).poly(dT) and comparison with poly(dA-dT).poly(dA-dT).Biopolymers. 2002 Mar;63(3):181-94. doi: 10.1002/bip.10022. Biopolymers. 2002. PMID: 11787006
-
The hydrogen-bonding structure in parallel-stranded duplex DNA is reverse Watson-Crick.Biochemistry. 1991 Mar 26;30(12):3062-9. doi: 10.1021/bi00226a012. Biochemistry. 1991. PMID: 2007140
-
A vibrational spectroscopic study of the self-association of polyinosinic acid and polyguanylic acid in aqueous solution.Biopolymers. 1994 Jan;34(1):91-100. doi: 10.1002/bip.360340110. Biopolymers. 1994. PMID: 8110970
Cited by
-
Molecular structure of a U•A-U-rich RNA triple helix with 11 consecutive base triples.Nucleic Acids Res. 2020 Apr 6;48(6):3304-3314. doi: 10.1093/nar/gkz1222. Nucleic Acids Res. 2020. PMID: 31930330 Free PMC article.
-
Structural Recognition of Triple-Stranded DNA by Surface-Enhanced Raman Spectroscopy.Nanomaterials (Basel). 2021 Jan 27;11(2):326. doi: 10.3390/nano11020326. Nanomaterials (Basel). 2021. PMID: 33513847 Free PMC article.
-
CD of homopolymer DNA-RNA hybrid duplexes and triplexes containing A-T or A-U base pairs.Nucleic Acids Res. 1986 Dec 22;14(24):10071-90. doi: 10.1093/nar/14.24.10071. Nucleic Acids Res. 1986. PMID: 2433679 Free PMC article.
-
Vacuum UV CD spectra of homopolymer duplexes and triplexes containing A.T or A.U base pairs.Nucleic Acids Res. 1991 May 11;19(9):2275-80. doi: 10.1093/nar/19.9.2275. Nucleic Acids Res. 1991. PMID: 2041768 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous