Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 May;40(5):1278-86.
doi: 10.1111/j.1471-4159.1983.tb13567.x.

Brain free fatty acids, edema, and mortality in gerbils subjected to transient, bilateral ischemia, and effect of barbiturate anesthesia

Brain free fatty acids, edema, and mortality in gerbils subjected to transient, bilateral ischemia, and effect of barbiturate anesthesia

S Yoshida et al. J Neurochem. 1983 May.

Abstract

Brain free fatty acids (FFAs) and brain water content were measured in gerbils subjected to transient, bilateral cerebral ischemia under brief halothane anesthesia (nontreated group) and pentobarbital anesthesia (treated group). Mortality in the two groups was also evaluated. In nontreated animals, both saturated and mono- and polyunsaturated FFAs increased approximately 12-fold in total at the end of a 30-min period of ischemia; during recirculation, the level of free arachidonic acid dropped rapidly, while other FFAs gradually decreased to their preischemic levels in 90 min. In treated animals, the levels of total FFAs were lower than the nontreated group during ischemia, but higher at 90 min of reflow, and the decrease in the rate of free arachidonic acid was slower in the early period of reflow. Water content increased progressively during ischemia and recirculation with no extravasation of serum protein, but the values were consistently lower in the treated group. None of the nontreated animals survived for 2 weeks; in contrast, survival was 37.5% in the treated group. It is suggested that barbiturate protection from transient cerebral ischemia may be mediated by the attenuation of both membrane phospholipid hydrolysis during ischemia and postischemic peroxidation of accumulated free arachidonic acid.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources