Enzyme patterns in D. melanogaster imaginal discs: distribution of glucose-6-phosphate and 6-phosphogluconate dehydrogenase
- PMID: 6413822
- DOI: 10.1007/BF00334820
Enzyme patterns in D. melanogaster imaginal discs: distribution of glucose-6-phosphate and 6-phosphogluconate dehydrogenase
Abstract
Distribution of glucose-6-phosphate dehydrogenase (G6PD) and 6-phospho-gluconate dehydrogenase (6PGD) in imaginal discs of Drosophila melanogaster was determined. Differential patterns of staining were found in all discs examined, i.e., eye-antennal, wing, leg, labial and genital. By using null mutants for either G6PD or 6PGD, the enzymes were shown to have the same distribution patterns. Staining with glucose-6-phosphate as a substrate resulted in the detection of both G6PD and 6PGD. Results of staining discs from homoeotic mutants indicate that the enzyme distribution patterns are under genetic control. In the presence of the homoeotic engrailed (en) mutation which transforms posterior wing compartment into anterior, the G6PD pattern of the posterior compartment of the wing disc was specifically transformed toward that of the anterior compartment. The bithorax series of homoeotic mutants was similarly investigated. The bithorax (bx3) mutation transforms the anterior part of the haltere to anterior wing blade. Similarly the G6PD pattern in the anterior haltere disc transforms to that of anterior wing disc. The complimentary transformation, postbithorax (pbx) results in a change of the posterior part of the haltere to posterior wing, which is likewise reflected in an altered staining pattern for G6PD in the posterior portion of the haltere disc. The combination of the bx3 and pbx resulted in a staining pattern of the haltere disc virtually indistinguishable from the normal wing disc.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
