Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978 Apr;105(2):187-97.
doi: 10.1099/00221287-105-2-187.

Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment

Comparative Study

Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment

A Matin et al. J Gen Microbiol. 1978 Apr.

Abstract

A Spirillum sp. and a Pseudomonas sp. possessing crossing substrate saturation curves for L-lactate were isolated from fresh water by chemostat enrichment. Their Ks and mumax values for L-lactate were: Spirillum sp., 23 micrometer and 0.35 h-1, respectively; Pseudomonas sp., 91 micrometer and 0.64 h-1, respectively. Under L-lactate limitation, pseudomonas sp. outgrew Spirillum s. at dilution rates (D) above 0.29 h-1, but the converse occurred at lower D values. The advantage of Spirillum sp. increased with decreasing D until, at D = 0.05 h-1 (i.e. L-lactate concentration of approximately 1 micrometer), Pseudomonas sp. was eliminated from the culture essentially as a non-growing population. In Spirillum sp. the Km for L-lactate transport (5.8 micrometer) was threefold lower than in Pseudomonas sp. (20 micrometer); Spirillum sp. also possessed a higher Vmax for the transport of this substrate. The surface to volume ratio was higher in Spirillum sp. and increased more markedly than in Pseudomonas sp. in response to decreasing D. Thus, a more efficient scavenging capacity contributes to the advantage of Spirillum sp. at low concentrations of the carbon source. Although most of the enzymes of L-lactate catabolism were more active in Pseudomonas sp., NADH oxidase activity was about twice as high in Spirillum sp.; and, unlike Pseudomonas sp., the cytochrome c content of this bacterium increased markedly with decreasing D. A more active and/or more efficient respiratory chain may therefore also play a role in the advantage of Spirillum sp. The other factors which appear to be involved include a lower energy of maintenance of Spirillum sp. [0.016 g L-lactate (g cell dry wt)-1 h-1 compared with 0.066 in Pseudomonas sp.] and a lower minimal growth rate.

PubMed Disclaimer

Similar articles

Cited by

Publication types