Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Nov;55(5):1418-25.
doi: 10.1152/jappl.1983.55.5.1418.

Effect of intravenous dopamine on hypercapnic ventilatory response in humans

Effect of intravenous dopamine on hypercapnic ventilatory response in humans

D S Ward et al. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov.

Abstract

This study assessed the effect of low-dose intravenous dopamine (3 micrograms X kg-1 X min-1) on the hypercapnic ventilatory response in humans. Six normal healthy subjects were studied. By manipulating the inspired carbon dioxide concentration, the end-tidal carbon dioxide tension was raised in a stepwise fashion from 41 to 49 Torr and held at this level for 4 min. The end-tidal CO2 tension was then lowered back to 41 Torr in a stepwise fashion. The end-tidal O2 tension was held constant at 106 Torr throughout the experiment. The ventilatory response to this normoxic hypercapnic stimulus was analyzed by fitting two exponential functions, allowing the response to be separated into slow and fast chemoreflex loops. Each loop is described by a gain, time constant, and time delay. A single eupneic threshold was used for both loops. Nine control experiments and eight experiments performed during dopamine infusion were analyzed. The dopamine infusion caused the fast loop gain to be significantly (P less than 0.05) reduced from 0.64 to 0.19 l X min-1 X Torr-1, while the slow loop gain was unchanged. The fast loop contribution was reduced from 28 to 11% of the total ventilatory response. None of the other model parameters were significantly affected by the dopamine infusion. Exogenously administered dopamine substantially reduces the sensitivity of the fast chemoreflex loop to carbon dioxide.

PubMed Disclaimer

Publication types

LinkOut - more resources