Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Dec;227(2):511-21.
doi: 10.1016/0003-9861(83)90480-0.

Role and location of NAD malic enzyme in thermogenic tissues of Araceae

Role and location of NAD malic enzyme in thermogenic tissues of Araceae

T ap Rees et al. Arch Biochem Biophys. 1983 Dec.

Abstract

This work was done to discover how those nonphotosynthetic tissues of the Araceae that become thermogenic release, as CO2, carbon recently fixed by phosphoenolpyruvate carboxylase. Extracts of clubs of the spadix of Arum maculatum showed no activity for phosphoenolpyruvate carboxykinase and low activities of NADP malic enzyme. NAD malic enzyme activity in the above extracts and in those of thermogenic tissues of other Araceae was appreciable. Analysis of homogenates of clubs of Typhonium giraldii by differential centrifugation and sucrose gradients showed that NAD malic enzyme was confined to mitochondria. Centrifugation of mitochondria after freezing and thawing left all the NAD malic enzyme in the supernatant. NAD malic enzyme in isolated, intact mitochondria was completely latent, and was completely protected from exogenous trypsin. The responses of this latency and protection to different concentrations of Triton X-100 suggested that none of the NAD malic enzyme was accessible from either the outside or the intermembrane space of the mitochondria. Treatment of excised clubs of A. maculatum with 2-N-butylmalonate largely prevented the development of the rapid respiration responsible for thermogenesis, and severely inhibited dark fixation of 14CO2. The conclusion is that in mature clubs of the Araceae phosphoenolpyruvate is converted to malate in the cytosol by phosphoenolpyruvate carboxylase and NAD malate dehydrogenase, and that this malate then enters the mitochondrial matrix where it is converted to pyruvate by NAD malic enzyme.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources