Internephron heterogeneity for carbonic anhydrase-independent bicarbonate reabsorption in the rat
- PMID: 6423664
- PMCID: PMC425116
- DOI: 10.1172/JCI111288
Internephron heterogeneity for carbonic anhydrase-independent bicarbonate reabsorption in the rat
Abstract
The present experiments were designed to localize the sites of carbonic anhydrase-independent bicarbonate reabsorption in the rat kidney and to examine some of its mechanisms. Young Munich-Wistar rats were studied using standard cortical and papillary free-flow micropuncture techniques. Total CO2 (tCO2) was determined using microcalorimetry. In control rats both superficial and juxtamedullary proximal nephrons reabsorbed approximately 95% of the filtered load of bicarbonate. The administration of acetazolamide (20 mg/kg body weight [bw]/h) decreased proximal reabsorption to 65.6% of the filtered load in superficial nephrons (32% was reabsorbed by the proximal convoluted tubule while 31.7% was reabsorbed by the loop segment), and to 38.4% in juxtamedullary nephrons. Absolute reabsorption of bicarbonate was also significantly higher in superficial than in juxtamedullary nephrons after administration of acetazolamide (727 +/- 82 vs. 346 +/- 126 pmol/min; P less than 0.05). The infusion of amiloride (2.5 mg/kg bw/h) to acetazolamide-treated rats increased the fractional excretion of bicarbonate as compared with animals treated with acetazolamide alone (34.9 +/- 1.9 vs. 42.9 +/- 2.1%; P less than 0.01), and induced net addition of bicarbonate between the superficial early distal tubule and the final urine (34.8 +/- 3.0 vs. 42.9 +/- 2.1%; P less than 0.05). Amiloride at this dose did not affect proximal water or bicarbonate transport; our studies localize its site of action to the terminal nephron. Vasa recta (VR) plasma and loop of Henle (LH) tubular fluid tCO2 were determined in control and acetazolamide-treated rats in order to identify possible driving forces for carbonic anhydrase-independent bicarbonate reabsorption in the rat papilla. Control animals showed a tCO2 gradient favoring secretion (LH tCO2, 7.4 +/- 1.7 mM vs. VR tCO2, 19.1 +/- 2.3 mM; P less than 0.005). Acetazolamide administration reversed this chemical concentration gradient, inducing a driving force favoring reabsorption of bicarbonate (LH tCO2, 27.0 +/- 1.4 mM vs. VR tCO2, 20.4 +/- 1.0 mM; P less than 0.005). Our study shows that in addition to the superficial proximal convoluted tubule, the loop segment and the collecting duct show acetazolamide-insensitive bicarbonate reabsorption. No internephron heterogeneity for bicarbonate transport was found in controls. The infusion of acetazolamide, however, induced significant internephron heterogeneity for bicarbonate reabsorption, with superficial nephrons reabsorbing a higher fractional and absolute load of bicarbonate than juxtamedullary nephrons. We think that the net addition of bicarbonate induced by amiloride is secondary to inhibition of voltage-dependent, carbonic anhydrase-independent bicarbonate reabsorption at the level of the collecting duct, which uncovers a greater delivery of carbonate from deeper nephrons to the collecting duct. Finally, our results suggest that carbonic anhydrase-independent bicarbonate reabsorption is partly passive, driven by favorable chemical gradients in the papillary tubular structures, and partly voltage-dependent, in the collecting duct.
Similar articles
-
Effect of carbonic anhydrase inhibition on superficial and deep nephron bicarbonate reabsorption in the rat.J Clin Invest. 1983 Jan;71(1):55-65. doi: 10.1172/jci110751. J Clin Invest. 1983. PMID: 6848559 Free PMC article.
-
Carbonic anhydrase independent bicarbonate reabsorption in rats with chronic papillary necrosis.Miner Electrolyte Metab. 1984;10(5):319-25. Miner Electrolyte Metab. 1984. PMID: 6436656
-
Effect of acute hypercapnia on renal and proximal tubular total carbon dioxide reabsorption in the acetazolamide-treated rat.J Clin Invest. 1986 Feb;77(2):465-73. doi: 10.1172/JCI112325. J Clin Invest. 1986. PMID: 3080476 Free PMC article.
-
Chemistry of the renal reabsorption of bicarbonate.Can J Physiol Pharmacol. 1974 Dec;52(6):1041-50. doi: 10.1139/y74-138. Can J Physiol Pharmacol. 1974. PMID: 4217649 Review. No abstract available.
-
Reclamation of filtered bicarbonate.Kidney Int. 1990 Oct;38(4):584-9. doi: 10.1038/ki.1990.246. Kidney Int. 1990. PMID: 2172615 Review.
Cited by
-
The glomerular basement membrane as a model system to study the bioactivity of heparan sulfate glycosaminoglycans.Microsc Microanal. 2012 Feb;18(1):3-21. doi: 10.1017/S1431927611012682. Microsc Microanal. 2012. PMID: 22258721 Free PMC article. Review.
-
Electrophysiological identification of alpha- and beta-intercalated cells and their distribution along the rabbit distal nephron segments.J Clin Invest. 1990 Dec;86(6):1829-39. doi: 10.1172/JCI114913. J Clin Invest. 1990. PMID: 2254448 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources