Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways
- PMID: 6423933
- DOI: 10.1007/BF00382081
Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways
Abstract
Pseudomonas aeruginosa mutants defective in agmatine utilization (agu) were isolated. The genes encoding agmatine deiminase (aguA) and N-carbamoylputrescine amidinohydrolase (aguB) were 98% cotransducible and mapped between gpu and ser-3 in the 30 min region of the chromosome. Constructed agu arc double mutants (blocked in the arginine decarboxylase and arginine deiminase pathways) used arginine efficiently as the sole carbon and nitrogen source. This suggests the existence of a further arginine catabolic pathway in P. aeruginosa. The mapping data of this study confirm that in P. aeruginosa the chromosomal genes with catabolic functions do not show supraoperonic clustering as found in P. putida.
Similar articles
-
Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway.Microbiology (Reading). 2003 Mar;149(Pt 3):707-714. doi: 10.1099/mic.0.26009-0. Microbiology (Reading). 2003. PMID: 12634339
-
Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway.J Bacteriol. 1984 Dec;160(3):928-34. doi: 10.1128/jb.160.3.928-934.1984. J Bacteriol. 1984. PMID: 6438064 Free PMC article.
-
Catabolism of L-arginine by Pseudomonas aeruginosa.J Gen Microbiol. 1980 Feb;116(2):381-9. doi: 10.1099/00221287-116-2-381. J Gen Microbiol. 1980. PMID: 6768836
-
The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase.Int Microbiol. 2010 Dec;13(4):169-77. doi: 10.2436/20.1501.01.123. Int Microbiol. 2010. PMID: 21404211
-
Chromosome organization in Pseudomonas aeruginosa. Clustering and scattering of genes specifying four arginine catabolic pathways.Antibiot Chemother (1971). 1987;39:256-63. Antibiot Chemother (1971). 1987. PMID: 3118787 Review. No abstract available.
Cited by
-
Enhancement of the Potential To Utilize Octopine in the Nonfluorescent Pseudomonas sp. Strain 92.Appl Environ Microbiol. 1991 Aug;57(8):2179-85. doi: 10.1128/aem.57.8.2179-2185.1991. Appl Environ Microbiol. 1991. PMID: 16348533 Free PMC article.
-
Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa.J Bacteriol. 2004 Jun;186(12):3855-61. doi: 10.1128/JB.186.12.3855-3861.2004. J Bacteriol. 2004. PMID: 15175299 Free PMC article.
-
Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1.J Bacteriol. 2001 Nov;183(22):6517-24. doi: 10.1128/JB.183.22.6517-6524.2001. J Bacteriol. 2001. PMID: 11673419 Free PMC article.
-
Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa.Arch Microbiol. 1985 Mar;141(2):170-6. doi: 10.1007/BF00423280. Arch Microbiol. 1985. PMID: 2859844
-
The gene cluster for agmatine catabolism of Enterococcus faecalis: study of recombinant putrescine transcarbamylase and agmatine deiminase and a snapshot of agmatine deiminase catalyzing its reaction.J Bacteriol. 2007 Feb;189(4):1254-65. doi: 10.1128/JB.01216-06. Epub 2006 Oct 6. J Bacteriol. 2007. PMID: 17028272 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases