Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 May;103(1):200-10.
doi: 10.1016/0012-1606(84)90021-6.

The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve

The differential appearance of neurofilament triplet polypeptides in the developing rat optic nerve

J S Pachter et al. Dev Biol. 1984 May.

Abstract

The ontogenetic appearance of the individual triplet polypeptides that comprise mammalian neurofilaments was studied in the developing rat optic nerve. Triton-insoluble cytoskeletal preparations from the optic nerves of rats of postnatal ages 1 Day (P1), 6 days (P6), 10 days (P10), 20 days (P20), and 3 months (adult) were analyzed for protein composition by one and two-dimensional gel electrophoresis. Results indicate that at P1, both the 150- and 68-kDa neurofilament subunit proteins are present. The 200-kDa subunit first becomes discernible at P20, but, at this age, it is still present in considerably less quantity than in the adult. Immunocytochemical verification of the presence of neurofilament protein was accomplished by staining tissue sections with specific antibodies against the 150- and the 68-kDa neurofilament subunits using the peroxidase-antiperoxidase technique. Results of the morphological analyses have shown that neurofilaments are not present in quantity until P10, which coincides with the time when the 68-kDa subunit increases in quantity by one dimensional gel analysis. Thus, the 150- and 68-kDa subunits can be detected prior to the appearance of neurofilaments, and the 200-kDa protein is not observed until sometime later. The potential physiological significance of the differential subunit transport is discussed with respect to neuronal differentiation in the developing mammalian CNS.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources