Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Jan 4;464(1):127-41.
doi: 10.1016/0005-2736(77)90376-5.

Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies

Influence of membrane thickness and ion concentration on the properties of the gramicidin a channel. Autocorrelation, spectral power density, relaxation and single-channel studies

H A Kolb et al. Biochim Biophys Acta. .

Abstract

The properties of the gramicidin A channel in membranes made from a series of monoglycerides have been studied. In agreement with previous studies, the dissociation rate constant kD of the dimeric channel was found to increase strongly with increasing chain length of the monoglyceride, corresponding to a decrease of the mean life-time of the channel. The value of kD, however, was not strictly correlated with the membrane thickness, as seen from a comparison of membranes with different solvent content. Furthermore, the life-time of the channel increased with the concentration of the permeable ion. This effect was tentatively explained by an electrostatic stabilization of the channel. The single-channel conductance lambda was found to decrease with increasing membrane thickness d, if d was varied by increasing the chain length of the lipid. On the other hand, if d was changed by varying the solvent content of the membranes formed from one and the same lipid, lambda remained constant. These observations were explained by the assumption of local inhomogeneities in the membrane thickness. A striking difference between the lambda values obtained from autocorrelation analysis in the presence of many presence of many channels (lambda a) and those obtained from single-channel experiments (lambda sc) occurred with membranes from longer chain-length monoglycerides. This difference disappeared at low ion concentrations. Electrostatic interactions between channels in local clusters were proposed for an interpretation of these findings.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources