Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Nov 15;143(1):188-95.
doi: 10.1016/0003-2697(84)90575-x.

A stopped-flow investigation of calcium ion binding by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid

A stopped-flow investigation of calcium ion binding by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid

P D Smith et al. Anal Biochem. .

Abstract

The kinetics of calcium ion complexation by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) were investigated using the stopped-flow technique. This study was performed within the pH range 5.8 to 8.4. The reaction was found to be first order in EGTA and complex order in calcium, with an observed second-order rate constant (pH 7, T = 25 degrees C, ionic strength = 0.1 M) of about 1.5 X 10(6) M-1 s-1. The rate constant was independent of hydrogen ion concentration between pH 5.8 and 7.3; above pH 7.3 it increased in magnitude with increasing pH, and was 2.0 X 10(8) M-1 s-1 at pH 8.4. The rate constant at 16 and 38 degrees C (pH 6.8) was found to be 0.9 and 7 X 10(6) M-1 s-1, respectively. These data imply that calcium ion buffering by EGTA will require times on the order of milliseconds when EGTA is present in millimolar concentrations.

PubMed Disclaimer

LinkOut - more resources