Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 Aug;109(1):231-8.
doi: 10.1111/j.1432-1033.1980.tb04788.x.

Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum

Free article

Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum

Y Dupont. Eur J Biochem. 1980 Aug.
Free article

Abstract

The calcium pump of sarcoplasmic reticulum possesses high-affinity calcium-binding and ATP-binding sites. At 0 degrees C pH 6.8 and in the absence of calcium, about 3.5 nmol/mg of high-affinity ATP-binding sites are titrated with a dissociation constant, Kd, of 5 microM. In the presence of Ca2+, ATP phosphorylates the enzyme at a much lower concentration: K 1/2 = 100 nM. In the absence of ATP the calcium ions reversibly bind to the high-affinity calcium sites (6.5 nmol/mg); however the following is shown in this paper. 1. Phosphorylation of the enzyme in the presence of calcium leads to the immediate occlusion of the calcium ions bound to the high-affinity sites. 2. Two moles of calcium are occluded per mole of phosphoenzyme formed. 3. Occlusion can be reversed by ADP. 4. Transport is a slower process which occurs in the presence of Mg2+ at the same rate as the spontaneous decay of the phosphoenzyme. Experiments performed in the absence of magnesium reveal another divalent cation binding site which is probably directly involved in ATP and Pi binding. The nature of the cation bound to this site determines the stability and ADP-sensitivity of the phosphoenzyme.

PubMed Disclaimer

LinkOut - more resources