Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1981 Dec 10;256(23):12343-9.

Purification and characterization of the plasma membrane ATPase of Neurospora crassa

  • PMID: 6457834
Free article

Purification and characterization of the plasma membrane ATPase of Neurospora crassa

B J Bowman et al. J Biol Chem. .
Free article

Abstract

The plasma membrane of Neurospora crassa contains a proton-translocating ATPase, which functions to generate a large membrane potential and thereby to drive a variety of H+-dependent co-transport systems. We have purified this ATPase by a three-step procedure in which 1) loosely bound membrane proteins are removed by treatment with 0.1% deoxycholate; 2) the ATPase is solubilized with 0.6% deoxycholate in the presence of 45% glycerol; and 3) the solubilized enzyme is purified by centrifugation through a glycerol gradient. This procedure typically yields approximately 30% of the starting ATPase activity in a nearly homogeneous enzyme preparation of high specific activity, 61-98 mumol/min/mg of protein. The membrane-bound and purified forms of the ATPase are very similar with respect to kinetic properties (pH optimum, nucleotide and divalent cation specificity, sigmoid dependence upon Mg-ATP concentration) and sensitivity to inhibitors (including N,N'-dicyclohexylcarbodiimide and vanadate). Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified ATPase displays a single major polypeptide band of Mr = 104,000, which is essentially identical in its electrophoretic mobility with the large subunit of [Na+, K+]-ATPase of animal cell membranes and [Ca2+]-ATPase of sarcoplasmic reticulum. The structural similarity of the fungal and animal cell ATPases, together with the fact that both are known to form acyl phosphate intermediates, suggests that they may share a common reaction mechanism.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources