Alanine aminotransferase and some other enzymes in different populations of free brain cortex mitochondria
- PMID: 6458052
Alanine aminotransferase and some other enzymes in different populations of free brain cortex mitochondria
Abstract
The activity of certain key enzymes involved in glutamic acid metabolism was studied in purified brain mitochondria and in mitochondrial subfractions separated in a discontinuous 1.2--1.6 mol/l sucrose gradient. Alanine aminotransferase and glutamate dehydrogenase were found to be matrix enzymes and aspartate aminotransferase to be associated with the inner mitochondrial membranes. After the purified mitochondria had been separated into 5 subfractions, aspartate aminotransferase and NAD+-dependent isocitrate dehydrogenase were found to be bound to the lighter mitochondrial subfractions settling at the 1.4--1.5 mol/l sucrose boundary while alanine aminotransferase, 4-aminobutyrate transaminase and glutamate dehydrogenase were associated with the heavier subfractions settling below 2.4 mol/l sucrose. The highest specific activity of the given enzymes was found in the subfraction settling at the 1.4--1.5 mol/l sucrose boundary, the only exception being alanine aminotransferase activity, whose maximum was found in the subfractions settling in 1.5 and 1.6 mol/l sucrose. It was concluded that alanine aminotransferase, in conjunction with glutamate dehydrogenase, is linked to NH3 binding and to the oxidation of reduced adenine nucleotides; in addition, alanine aminotransferase is presumed to have the function of transporting glutamate from the mitochondria to the extramitochondrial space.