Volume absorption in the pars recta. II. Hydraulic conductivity coefficient
- PMID: 645869
- DOI: 10.1152/ajprenal.1978.234.4.F340
Volume absorption in the pars recta. II. Hydraulic conductivity coefficient
Abstract
We evaluated the hydraulic conductivity (Pf, micron s-1) of superficial proximal straight tubules isolated from rabbit kidney. Tubules were perfused with hypotonic (270 mosmol/kg H2O) and bathed with isotonic (290 mosmol/kg H2O) NaCl buffers at 25 degrees C. Due to the tendency of transepithelial osmosis plus solute entry to produce osmotic equilibrium along the perfused length, we observed that the total net volume absorption ('JV, nl min-1) increased from 0.64 to 2.21 when the perfusion rate (VO, nl min-1) was increased from 11 to 45 in a group of tubules with an average length of 0.86 mm. From a 'JV of 2.21 nl min-1 at VO = 45 nl min-1 we computed a minimum Pf of 2,200 micron s-1. And extrapolation of the data to VO leads to infinity gave a Pf value of 5,200-7,600 micron s-1. The same perfusion rate dependence of 'JV in a group of tubules with an average length of 3.29 mm gave quantitatively similar results. A theoretical analysis of radial osmosis occurring simultaneously with axial osmotic equilibration showed that Pf values in the range of 3,000-4,000 micron s-1 accurately predicted the observed relations between VO, 'JV, and tubule length.
Similar articles
-
Volume absorption in the pars recta. III. Luminal hypotonicity as a driving force for isotonic volume absorption.Am J Physiol. 1978 Apr;234(4):F349-55. doi: 10.1152/ajprenal.1978.234.4.F349. Am J Physiol. 1978. PMID: 645870
-
A component of fluid absorption linked to passive ion flows in the superficial pars recta.J Gen Physiol. 1975 Oct;66(4):445-71. doi: 10.1085/jgp.66.4.445. J Gen Physiol. 1975. PMID: 1181377 Free PMC article.
-
Flow dependence of fluid transport in the isolated superficial pars recta: evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption.Kidney Int. 1981 Nov;20(5):588-97. doi: 10.1038/ki.1981.181. Kidney Int. 1981. PMID: 7343709
-
Effective luminal hypotonicity: the driving force for isotonic proximal tubular fluid absorption.Am J Physiol. 1979 Feb;236(2):F89-96. doi: 10.1152/ajprenal.1979.236.2.F89. Am J Physiol. 1979. PMID: 369393 Review.
-
Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.J Gen Physiol. 1975 Dec;66(6):671-733. doi: 10.1085/jgp.66.6.671. J Gen Physiol. 1975. PMID: 1104761 Free PMC article. Review.
Cited by
-
Expression and localization of aquaporins in the kidney of the musk shrew (Suncus murinus).J Histochem Cytochem. 2008 Jan;56(1):67-75. doi: 10.1369/jhc.7A7281.2007. Epub 2007 Oct 15. J Histochem Cytochem. 2008. PMID: 17938283 Free PMC article.
-
Local pH domains regulate NHE3-mediated Na⁺ reabsorption in the renal proximal tubule.Am J Physiol Renal Physiol. 2014 Dec 1;307(11):F1249-62. doi: 10.1152/ajprenal.00174.2014. Epub 2014 Oct 8. Am J Physiol Renal Physiol. 2014. PMID: 25298526 Free PMC article.
-
Gallbladder epithelial cell hydraulic water permeability and volume regulation.J Gen Physiol. 1982 Mar;79(3):481-505. doi: 10.1085/jgp.79.3.481. J Gen Physiol. 1982. PMID: 7077291 Free PMC article.
-
Ontogeny of water transport in the rabbit proximal tubule.Pediatr Nephrol. 2003 Nov;18(11):1089-94. doi: 10.1007/s00467-003-1241-y. Epub 2003 Sep 5. Pediatr Nephrol. 2003. PMID: 12961084 Review.
-
Pathways for volume flow and volume regulation in leaky epithelia.Pflugers Arch. 1985;405 Suppl 1:S17-22. doi: 10.1007/BF00581774. Pflugers Arch. 1985. PMID: 4088834
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous