Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1978 Apr 18;17(8):1479-84.
doi: 10.1021/bi00601a019.

Thermodynamics of protein cross-links

Comparative Study

Thermodynamics of protein cross-links

R E Johnson et al. Biochemistry. .

Abstract

The thermal transitions of native lysozyme and a well-characterized cross-linked derivative of lysozyme [Imoto, T., and Rupley, J. A. (1973), J. Mol. Biol. 80, 657] have been studied in 1.94 M guanidine hydrochloride at pH 2. The observed increase in the melting temperature from 32.4 degrees C for native lysozyme to 61.8 degrees C for the cross-linked derivative corresponds to a calculated 5.2 kcal/mol increase in the free energy of denaturation. This free-energy change is attributed to the decreased entropy of the unfolded polypeptide chain following introduction of a cross-link and is shown to compare well with theoretical predictions. The possibility that an introduction of a cross-link could also affect the enthalpy of an unfolded protein was investigated. The heats of reduction of bovine serum albumin and lysozyme by dithioerythritol in 6 M guanidine hydrochloride were determined and compared to that for the model peptide, oxidized glutathione. The near identity of the observed heats was taken as evidence that the introduction of cross-links into a random-coil protein does not, in general, introduce strain.

PubMed Disclaimer

Publication types

LinkOut - more resources