Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Nov;87(5):1120-6.

Increased blood flow through the portal system in cirrhotic rats

  • PMID: 6479534

Increased blood flow through the portal system in cirrhotic rats

J Vorobioff et al. Gastroenterology. 1984 Nov.

Abstract

Portal venous pressure is the result of the interplay between portal venous blood flow and the vascular resistance offered to that flow. Whether portal hypertension is maintained only by an increased portal venous resistance or also by an increased blood flow within the portal venous system is still open to speculation. To resolve these differences, splanchnic and systemic hemodynamics were evaluated in cirrhotic rats, induced by CCl4. Blood flow and portal-systemic shunting were measured by radioactive microsphere techniques. All cirrhotic rats had portal hypertension (portal venous pressure 13.5 +/- 1.1 vs. 9.0 +/- 0.5 mmHg, in normal control rats; p less than 0.01), but portal-systemic shunting in cirrhosis (31% +/- 13% vs. 0.2% +/- 0.02%; p less than 0.05) was variable, ranging from 1% to 97%. Portal venous inflow, the total blood flow within the portal system, was increased in cirrhotic rats (5.75 +/- 0.04 vs. 4.52 +/- 0.36 ml/min per 100 g; p less than 0.05). Total splanchnic arterial resistance was reduced in cirrhotic rats (3.3 +/- 0.2 vs. 5.8 +/- 0.5 dyn X s X cm-5 X 10(5); p less than 0.01). Portal venous resistance, however, was not abnormally elevated in cirrhotic rats (4.6 +/- 0.5 vs. 4.7 +/- 0.5 dyn X s X cm-5 X 10(4), p = NS). Splanchnic hemodynamics in cirrhotic rats demonstrate that portal hypertension is maintained, at least in part, by a hyperdynamic portal venous inflow. The hemodynamic data in cirrhotic rats provided evidence that supports the role of an increased portal blood flow in portal hypertension and gives a quantitative definition of splanchnic hemodynamics in intrahepatic portal hypertension.

PubMed Disclaimer

Publication types

LinkOut - more resources