Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1984 Oct 17;777(1):56-66.
doi: 10.1016/0005-2736(84)90496-6.

Adsorption of local anesthetics on phospholipid membranes

Comparative Study

Adsorption of local anesthetics on phospholipid membranes

S Ohki. Biochim Biophys Acta. .

Abstract

In order to elucidate various types of adsorption modes of local anesthetics in membranes, a study of local anesthetic adsorption on lipid membranes was made by measuring electrophoretic mobility of phospholipid vesicles in the presence of local anesthetics of various concentrations in the vesicle suspension solution. The amounts of local anesthetics to be adsorbed on the membrane surface were deduced from the electrophoretic mobility of a phosphatidylcholine vesicle at various concentrations of the cationic form of local anesthetics. The order of surface adsorption of local anesthetic was dibucaine greater than tetracaine greater than procaine. A surface partition coefficient, Ks = 1/ACs, was introduced, where A is the membrane surface area per local anesthetic molecule adsorbed and Cs the surface concentration of local anesthetics. The amounts of local anesthetic adsorbed on phosphatidylserine membrane were much greater than that of the phosphatidylcholine membrane. It was deduced that the major factor for this large adsorption was due to the enhancement of cationic forms of local anesthetic concentrations at the charged membrane surface. Divalent cations inhibited such surface adsorption of local anesthetics by reducing surface concentrations of local anesthetics where the surface potential of the negatively charged membrane surface was influenced by the presence of divalent cations in the solution as well as by the reduction of fixed surface charges due to divalent cation binding. Some association modes of local anesthetics on nerve membranes are discussed with the results obtained in the above adsorption study.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources