Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Nov 10;259(21):13084-8.

Sigmoid kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase. Effect of pH and malonyl-CoA

  • PMID: 6490647
Free article

Sigmoid kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase. Effect of pH and malonyl-CoA

C J Fiol et al. J Biol Chem. .
Free article

Abstract

The kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase have been extensively investigated with a semiautomated system and the computer program TANKIN and shown to be sigmoidal with both acyl-CoA and L-carnitine. In contrast, Michaelis-Menten kinetics were found with carnitine octanoyltransferase. The catalytic activity of carnitine palmitoyltransferase is strongly pH dependent. The K0.5 and Vmax are both greater at lower pH. The K0.5 for palmitoyl-CoA is 1.9 and 24.2 microM at pH 8 and 6, respectively. The K0.5 for L-carnitine is 0.2 and 2.9 mM at pH 8 and 6, respectively. Malonyl-CoA (20-600 microM) had no effect on the kinetic parameters for palmitoyl-CoA at both saturating and subsaturating levels of L-carnitine. We conclude that malonyl-CoA is not a competitive inhibitor of carnitine palmitoyltransferase. The purified enzyme contained 18.9 mol of bound phospholipid/mol of enzyme which were identified as cardiolipin, phosphatidylethanolamine, and phosphatidylcholine by thin-layer chromatography. The data are consistent with the conclusion that native carnitine palmitoyltransferase exhibits different catalytic properties on either side of the inner membrane of mitochondria due to its non-Michaelis-Menten kinetic behavior, which can be affected by pH differences and differences in membrane environment.

PubMed Disclaimer

Publication types

LinkOut - more resources